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Abstract

The wavelet transform has become a cutting-edge technology in image compression

research. This article explains what wavelets are and provides a practical, nuts-and-

bolts tutorial on wavelet-based compression that will help readers to understand and

experiment with this important new technology.
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1 Introduction

The advent of multimedia computing has lead to an increased demand for digital images.

The storage and manipulation of these images in their raw form is very expensive; for

example, a standard 35mm photograph digitized at 12 �m per pixel requires about 18

MBytes of storage and one second of NTSC-quality color video requires almost 23 MBytes of

storage. To make widespread use of digital imagery practical, some form of data compression

must be used.

Digital images can be compressed by eliminating redundant information. There are

three types of redundancy that can be exploited by image compression systems:

- Spatial Redundancy. In almost all natural images, the values of neighboring pixels are

strongly correlated.

- Spectral Redundancy. In images composed of more than one spectral band, the spectral

values for the same pixel location are often correlated.

- Temporal Redundancy. Adjacent frames in a video sequence often show very little

change.

The removal of spatial and spectral redundancies is often accomplished by transform coding,

which uses some reversible linear transform to the decorrelate the image data (Rabbani

and Jones 1991). Temporal redundancy is exploited by techniques that only encode the

di�erences between adjacent frames in the image sequence, such as motion prediction and

compensation (Jain and Jain 1981; Liu and Zaccarin 1993).

In the last few years, the wavelet transform has become a cutting edge technology in

image compression research. Although the literature on wavelets is vast, most of the papers
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dealing with wavelet-based image compression are written by specialists for the specialist.

The purpose of this article is to provide a practical, nuts-and-bolts tutorial on wavelet-

based compression that will (hopefully) help you to understand and experiment with this

important new technology.

This paper is organized into three main sections. Section 2 discusses the theory behind

wavelets and why they are useful for image compression. Section 3 describes how the wavelet

transform is implemented and used in still image compression systems, and presents some

results comparing several di�erent wavelet coding schemes with the JPEG (Wallace 1991)

still image compression standard. In Section 4 we describe some initial results with a novel

software-only video decompression scheme for the PC environment. We conclude the paper

with some remarks about current and future trends in wavelet-based compression.

1.1 A Note on Performance Measures

Throughout this paper, numbers are given for two measures of compression performance

| compression ratio and peak signal-to-noise ratio (PSNR). The results of both of these

performance measures can be used to mislead the unwary reader, so it is important to

explain exactly how these �gures were computed. We de�ne compression ratio as

the number of bits in the original image

the number of bits in the compressed image
:

In this paper we con�ne our measurements to 8 bits per pixel (bpp) greyscale images, so

the peak signal-to-noise ratio in decibels (dB) is computed as

PSNR = 20 log10
255

RMSE

where RMSE is the root mean-squared error de�ned as

RMSE =

vuut 1

NM

NX
i=1

MX
j=1

[f(i; j)� f̂(i; j)]
2

andN andM are the width and height, respectively, of the images in pixels, f is the original

image, and f̂ is the reconstructed image. Note that the original and the reconstructed images

must be the same size.

2 Wavelets

The purpose of this section is to provide an intuitive understanding of what wavelets are and

why they are useful for signal compression. For a more rigorous introduction to wavelets,

see (Daubechies 1992), (Chui 1992), or (Jawerth and Sweldens 1992).

One of the most commonly used approaches for analyzing a signal f(x) is to represent

it as a weighted sum of simple building blocks, called basis functions :

f(x) =
X
i

ci	i(x)

where the 	i(x) are basis functions and the ci are coe�cients, or weights. Since the basis

functions 	i are �xed, it is the coe�cients which contain the information about the signal.
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The simplest such representation uses translates of the impulse function as its only bases,

yielding a representation that reveals information only about the time domain behavior of

the signal. Choosing the sinusoids as the basis functions yields a Fourier representation

that reveals information only about the signal's frequency domain behavior.

For the purposes of signal compression, neither of the above representations is ideal.

What we would like to have is a representation which contains information about both

the time and frequency behavior of the signal. More speci�cally, we want to know the

frequency content of the signal at a particular instant in time. However, resolution in time

(�x) and resolution in frequency (�!) cannot both be made arbitrarily small at the same

time because their product is lower bounded by the Heisenberg inequality

�x�! �
1

2
:

This inequality means that we must trade o� time resolution for frequency resolution, or

vice versa. Thus, it is possible to get very good resolution in time if you are willing to settle

for low resolution in frequency, and you can get very good resolution in frequency if you are

willing to settle for low resolution in time.

The situation is really not all that bad from a compression standpoint. By their very

nature, low frequency events are spread out (or non-local) in time and high frequency events

are concentrated (or localized) in time. Thus, one way that we can live within the con�nes

of the Heisenberg inequality and yet still get useful time-frequency information about a

signal is if we design our basis functions to act like cascaded octave bandpass �lters, which

repeatedly split the signal's bandwidth in half.

To gain insight into designing a set of basis functions that will satisfy both our desire

for information and the Heisenberg inequality, let us compare the impulse function and the

sinusoids. The impulse function cannot provide information about the frequency behavior

of a signal because its support | the interval over which it is non-zero | is in�nitesimally

small. At the opposite extreme are the sinusoids, which cannot provide information about

the time behavior of a signal because they have in�nite support. What we seek, then, is

a compromise between these two extremes: a set of basis functions f	ig, each with �nite

support of a di�erent width. The di�erent support widths allow us to trade o� time and

frequency resolution in di�erent ways; for example, a wide basis function can examine a

large region of the signal and resolve low frequency details accurately, while a short basis

function can examine a small region of the signal to resolve time details accurately.

To simplify things, let us constrain all of the basis functions in f	ig to be scaled and

translated versions of the same prototype function 	, known as the mother wavelet . The

scaling is accomplished by multiplying x by some scale factor; if we choose the scale factor

to be a power of 2, yielding 	(2�x) where � is some integer, we get the cascaded octave

bandpass �lter structure we desire. Because 	 has �nite support, it will need to be trans-

lated along the time axis in order to cover an entire signal. This translation is accomplished

by considering all the integral shifts of 	,

	 (2�x� k) ; k 2 Z :

Note that this really means that we are translating 	 in steps of size 2��k.1 Putting this

all together gives us a wavelet decomposition of the signal,

f(x) =
X

� �nite

X
k �nite

c�k	�k(x)

1This is because 	(2�x� k) = 	(2� (x� 2��k)).
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where

	�k(x) = 2�=2	 (2�x� k)

(the multiplication by 2�=2 is needed to make the bases orthonormal). So far we have said

nothing about the coe�cients c�k . They are computed by the wavelet transform, which is

just the inner product of the signal f(x) with the basis functions 	�k(x).

The comparisons between wavelets and octave bandpass �lters was not made just for

pedagogical reasons. Wavelets can, in fact, be thought of and implemented as octave band-

pass �lters, and we shall treat them as such for the remainder of this paper.

3 Still Image Compression

A wide variety of wavelet-based image compression schemes have been reported in the lit-

erature, ranging from simple entropy coding to more complex techniques such as vector

quantization (Antonini et al. 1992; Hopper and Preston 1992), adaptive transforms (De-

sarte et al. 1992; Wickerhouser 1992), tree encodings (Shapiro 1993; Lewis and Knowles

1992), and edge-based coding (Froment and Mallat 1992). All of these schemes can be de-

scribed in terms of the general framework depicted in Fig. 1. Compression is accomplished

by applying a wavelet transform to decorrelate the image data, quantizing the resulting

transform coe�cients, and coding the quantized values. Image reconstruction is accom-

plished by inverting the compression operations. We now describe each of the boxes in

Fig. 1 in more detail.

 Forward Wavelet  

Transform
 Quantizer  Encoder 

 Inverse Wavelet 

Transform
 DeQuantizer   Decoder 

Compressor

Decompressor

Figure 1: Block diagram of wavelet-based image coders.
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3.1 Implementing the Wavelet Transform

The forward and inverse wavelet transforms can each be e�ciently implemented in O(n)

time by a pair of appropriately designed Quadrature Mirror Filters (QMFs) (Croisier et al.

1976). Therefore, wavelet-based image compression can be viewed as a form of subband

coding (Woods and O'Neil 1986). Each QMF pair consists of a lowpass �lter (H) and a

highpass �lter (G) which split a signal's bandwidth in half. The impulse responses of H

and G are mirror images, and are related by

gn = (�1)1�nh1�n: (1)

The impulse responses of the forward and inverse transform QMFs | denoted ( ~H; ~G) and

(H;G) respectively | are related by

gn = ~g�n (2)

hn = ~h�n: (3)

To illustrate how the wavelet transform is implemented, we shall use Daubechie's W6

wavelet (Daubechies 1988). We chose this wavelet because it is well known and has some

nice properties. One such property is that it has two vanishing moments, which means the

transform coe�cients will be zero (close to zero) for any signal that can be described by

(approximated by) a polynomial of degree 2 or less. The mother wavelet basis for W6 is

shown in Fig. 2. The �lter coe�cients for H of W6 are

h0 = 0:332670552950

h1 = 0:806891509311

h2 = 0:459877502118

h3 = �0:135011020010

h4 = �0:085441273882

h5 = 0:035226291882

from which the coe�cients for G, ~H , and ~G can be derived using Equations 1, 2, and 3.

The impulse responses of H and G are shown in Fig. 3.

A one-dimensional signal s can be �ltered by convolving the �lter coe�cients ck with

the signal values:

ŝi =
MX
k=0

cksi�k

where M is the number of coe�cients, or taps , in the �lter. The one-dimensional forward

wavelet transform of a signal s is performed by convolving s with both ~H and ~G and

downsampling by 2. As dictated by Equation 1, the relationship of the ~H and ~G �lter

coe�cients with the beginning of signal s is

~h5 ~h4 ~h3 ~h2 ~h1 ~h0
s0 s1 s2 s3 s4 s5 s6 � � �

~g5 ~g4 ~g3 ~g2 ~g1 ~g0

Note that the ~G �lter extends before the signal in time; if s is �nite, the ~H �lter will extend

beyond the end of the signal. A similar situation is encountered with the inverse wavelet

transform �lters H and G. In an implementation, one must make some choice about what
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Figure 2: The mother wavelet basis function for W6.
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values to pad the extensions with. A choice which works well in practice is to wrap the

signal about its endpoints, i.e.,

� � � sn�1 sn s0 s1 s2 � � � sn�2 sn�1 sn s0 s1 � � � ;

thereby creating a periodic extension of s.

Fig. 4 illustrates a single 2-D forward wavelet transform of an image, which is accom-

plished by two separate 1-D transforms. The image f(x; y) is �rst �ltered along the x

dimension, resulting in a lowpass image fL(x; y) and a highpass image fH(x; y). Since the

bandwidth of fL and fH along the x dimension is now half that of f , we can safely down-

sample each of the �ltered images in the x dimension by 2 without loss of information. The

downsampling is accomplished by dropping every other �ltered value. Both fL and fH are

then �ltered along the y dimension, resulting in four subimages: fLL, fLH , fHL, and fHH .

Once again, we can downsample the subimages by 2, this time along the y dimension. As

illustrated in Fig. 4, the 2-D �ltering decomposes an image into an average signal (fLL)

and three detail signals which are directionally sensitive: fLH emphasizes the horizontal

image features, fHL the vertical features, and fHH the diagonal features. The directional

sensitivity of the detail signals is an artifact of the frequency ranges they contain.

f x y( , )

f x yL ( , )

f x yH ( , )

f x yLL ( , )

f x yLH ( , )

f x yHL ( , )

f x yHH ( , )

% ( )G x
Downsample 

by 2 along x

% ( )H x
Downsample 

by 2 along  x

% ( )H y
Downsample 

by 2 along y

% ( )G y
Downsample 

by 2 along y

% ( )H y
Downsample 

by 2 along y

% ( )G y
Downsample 

by 2 along y

Figure 4: Block diagram of the 2-D forward wavelet transform.

It is customary in wavelet compression to recursively transform the average signal.2 The

number of transformations performed depends on several factors, including the amount of

compression desired, the size of the original image, and the length of the QMF �lters. In

general, the higher the desired compression ratio, the more times the transform is performed.

After the forward wavelet transform is completed, we are left with a matrix of coe�cients

that comprise the average signal and the detail signals of each scale. No compression of the

original image has been accomplished yet; in fact, each application of the forward wavelet

2A more sophisticated decomposition strategy is to use the wavelet packets of Coifman and Meyer (Wick-

erhouser 1992; Coifman and Wickerhouser 1992).
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transform causes the magnitude of the coe�cients to grow, so there has actually been an

increase in the amount of storage required for the image! Compression is achieved by

quantizing and encoding the wavelet coe�cients.

The 2-D inverse wavelet transform is illustrated in Fig. 5. The average and detail signals

are �rst upsampled by 2 along the y dimension. Upsampling is accomplished by inserting

a zero between each pair of values in the y dimension. The upsampling is necessary to

recover the proper bandwidth required to add the signals back together. After upsampling,

the signals are �ltered along the y dimension and added together appropriately. The process

is then repeated in the x dimension, yielding the �nal reconstructed image.

f x y( , )

f x yL ( , )

H x( )
Upsample by 

2 along x

f x yH ( , )

G x( )
Upsample by

2 along x

f x yLH ( , )

G y( )
Upsample by 

2 along y

f x yLL ( , )

H y( )
Upsample by 

 2 along y

f x yHL ( , )

H y( )
Upsample by 

2 along y

f x yHH ( , )

G y( )
Upsample by 

2 along y

+

+

+

Figure 5: Block diagram of the 2-D inverse wavelet transform.

3.2 Quantization

The forward wavelet transform decorrelates the pixel values of the original image and con-

centrates the image information into a relatively small number of coe�cients. Fig. 6 (Left)

is a histogram of the pixel values for the 8-bits per pixel (bpp) 512� 512 Lena image, and

Fig. 6 (Right) is a histogram of the wavelet coe�cients of the same image after the forward

wavelet transform is applied. The \information packing" e�ect of the wavelet transform is

readily apparent from the scarcity of coe�cients with large magnitudes.

The sharply peaked coe�cient distribution of the wavelet transformed image has a lower

zero-th order entropy (4.24 bpp) than the original image (7.46 bpp), thereby increasing the

amount of lossless compression possible.

We can also take advantage of the energy invariance property of the wavelet transform

to achieve high-quality lossy compression. The energy invariance property says that total

amount of energy in an image does not change when the wavelet transform is applied. This

property can also be viewed in a slightly di�erent way: any changes made to the values

of the wavelet coe�cients will result in proportional changes in the pixel values of the

reconstructed image. In other words, we can eliminate (set to zero) those coe�cients with

small magnitudes without creating signi�cant distortion in the reconstructed image. In
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Figure 6: LEFT) Normalized histogram of the pixel values in the original Lena image.

RIGHT) Normalized histogram of the wavelet transform coe�cients of the same image.

practice, it is possible to eliminate all but a few percent of the wavelet coe�cients and still

get a reconstructed image of reasonable quality. The elimination of small valued coe�cients

can be accomplished by applying a thresholding function

T (t; x) =

(
0 if jxj < t

x otherwise

to the coe�cient matrix. The amount of compression obtained can now be controlled by

varying the threshold parameter t.

Higher compression ratios can be obtained by quantizing the non-zero wavelet coe�-

cients before they are encoded. A quantizer is a many-to-one function Q(x) that maps many

input values into a (usually much) smaller set of output values. Quantizers are staircase

functions characterized by a set of numbers fdi; i = 0; . . . ; Ng called decision points and

a set of numbers fri; i = 0; . . . ; N � 1g called reconstruction levels . An input value x is

mapped to a reconstruction level ri if x lies in the interval (di; di+1].

To achieve the best results, a separate quantizer should be designed for each scale,

taking into account both the properties of the Human Visual System (Marr 1982) and the

statistical properties of the scale's coe�cients. The characteristics of the Human Visual

System guide the allocation of bits among the di�erent scales, and the coe�cient statistics

guide the quantizer design for each scale. Descriptions of various bit allocation strategies

can be found in (Matic and Mosley 1993) and (Clarke 1985).

The distribution of coe�cient values in the various detail signals can be modeled rea-

sonably well by the Generalized Gaussian Distribution (GGD). The probability density

function of the coe�cient distribution at each scale �, then, can be given by (Abramowitz

and Stegun 1965):

p�(x) =

�
���(��; ��)

2�(1=��)

�
exp (�[�(��; ��) jxj]

�� )
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Scale � Codeword Size Decision Points and Reconstruction Levels

(in bits)

8 2 di 5, 10, 23, 48, 256

ri 7, 15, 32, 65

7 3 di 5, 10, 18, 28, 40, 57, 81, 117, 512

ri 7, 14, 22, 33, 47, 67, 95, 139

6 3 di 10, 16, 26, 41, 63, 95, 144, 223, 1024

ri 12, 20, 32, 50, 76, 114, 174, 271

5 5 di 20, 33, 51, 73, 99, 128, 161, 201, 245

291, 339, 386, 436, 500, 591, 738, 2048

ri 25, 41, 61, 85, 113, 143, 179, 223, 267

314, 362, 410, 461, 539, 644, 834

Table 1: Lloyd-Max quantizers generated using magnitude data from the W6 transformed

Lena image.

where

�(�; �) = ��1
�
�(3=�)

�(1=�)

�1=2
and

�(a) =

Z
1

0

e�tta�1dt:

�� is the standard deviation of the coe�cient distribution at scale � and �� is a shape

parameter describing the exponential rate of decay of the distribution at scale �. For

example, when �� = 1 the GGD becomes the Laplacian pdf, while �� = 2 leads to the

Gaussian pdf. The �� appropriate for a particular class of images can be computed using

the �2 test or by simple observation. For the W6 wavelet and the Lena image, several of

the appropriate values of �� and �� are:

�8 = 0:58 �8 = 5:48

�7 = 0:49 �7 = 9:39

�6 = 0:43 �6 = 14:33

�5 = 0:39 �5 = 20:17

The design of scalar quantizers will also depend on the type of encoder to be used. If

the encoder uses �xed-length codewords, the Lloyd-Max algorithm (Max 1960) can be used

to design a quantizer that minimizes the mean-squared quantization error. If a variable-

length entropy coder is used, uniform quantization is optimal (in the mean-squared error

sense) when the coe�cient distribution is Laplacian; for other distributions, the algorithm

in (Wood 1969) can be used to design an optimal quantizer. Vector quantization (Gersho

and Grey 1992) has also been used in wavelet compression systems, for example (Antonini

et al. 1992) and (Bradley and Brislawn 1993).

Table 1 lists the decision points and reconstruction levels for a set of Lloyd-Max quan-

tizers generated using magnitude data from the W6 transformed Lena image. One extra

bit per codeword is needed to represent the sign of the quantized coe�cient. The codeword

sizes were chosen by experimentation.
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3.3 Coding the Coe�cients

The encoder/decoder pair, or codec, has the task of losslessly compressing and decompress-

ing the sparse matrix of quantized coe�cients. Codec design has received a tremendous

amount of attention, and a wide variety of schemes exist (Lelewer and Hirshberg 1987).

The design of a codec is usually a compromise between (often con
icting) requirements for

memory use, execution speed, available bandwidth, and reconstructed image quality.

For applications requiring fast execution, simple run-length coding (Pratt 1978) of the

zero-valued coe�cients has proven very e�ective. (The distribution of non-zero coe�cients

is such that rarely is it pro�table to run-length encode them.) The zero run-lengths can

be encoded using either �xed-length codewords or variable-length entropy coding; entropy

coding is more expensive to implement, but can improve the peak signal to noise ratio

(PSNR) of reconstructed images by as much as 3 dB, depending upon the energy-packing

ability of the wavelet in use.

For applications requiring the best possible image quality at a particular compression

ratio, a technique such as Shapiro's Zero Tree encoding (Shapiro 1993) is a better choice.

The execution speed tradeo� between these two codecs is quite dramatic: our run-length

entropy coder takes less than one second to compress a 512�512 8 bpp image on a 66-MHz

80486 computer, and Zero Tree-like coders can take up to 45 seconds to compress the same

image on the same machine. However, the quality of the Zero Tree image is much better

| 36.28 dB PSNR (Shapiro 1993) vs. 33.2 dB PSNR at a compression ratio of 16:1.

3.4 Compression Results

The peak signal to noise ratios of several di�erent wavelet compression techniques applied

to the 512� 512 8-bpp Lena image are compared in Fig. 7. The graphs show that both the

encoding technique and the particular wavelet used can make a signi�cant di�erence in the

performance of a compression system: the Zerotree coder performs the best; biorthogonal

wavelets (Antonini et al. 1992; Cohen 1992; Averbuch et al. 1993) perform better thanW6;

and variable length coders perform better than �xed length coders.

The performance of a baseline JPEG (Wallace 1991) image compressor3 is also indicated

in Fig. 7. At compression ratios less than 25:1 or so, JPEG performs better numerically than

the simple wavelet coders. At compression ratios above 30:1, JPEG performance rapidly

deteriorates, while wavelet coders degrade gracefully well beyond ratios of 100:1. Figure 8

compares the visual quality of several image coders.

4 Video Compression

The wavelet transform can also be used in the compression of image sequences, or video.

Video compression techniques are able to achieve high quality image reconstruction at low

bit rates by exploiting the temporal redundancies present in an image sequence (Le Gall

1991; Liu 1991). Wavelet-based implementations of at least two standard video compression

techniques, hierarchical motion compensation (Uz et al. 1991) and 3-D subband coding

(Karlson and Vetterli 1989), have been reported (Zhang and Zafar 1992; Lewis and Knowles

1990). However, the computational expense of the wavelet transform has so far prevented

its use in realtime, software-only video codecs for PC-class computers. In this section, we

3The JPEG coder that is included in Version 2.21 of John Bradley's xview program was used to generate

the JPEG performance data shown in Fig. 7.
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Figure 7: A comparison of the image reconstruction quality of several di�erent wavelet

coders and JPEG. The tests were performed on the 512� 512, 8-bpp Lena image. \VLC"

means Variable Length Coder, and \FLC" means Fixed Length Coder.

describe a new technique for rapidly evaluating the inverse wavelet transform and illustrate

its use in the context of a software-only video decoder based on frame di�erencing.

4.1 The Basic Idea

The playback speed of a wavelet-based video coder depends in large part upon how long it

takes to perform the inverse wavelet transform. A 66-Mhz 80486 computer takes about 0.25

seconds to compute a complete inverse wavelet transform for a 256� 256, 8-bpp greyscale

image. Unless one �nds a way to avoid performing a complete inverse transform each time an

image frame is reconstructed, wavelets are not viable for software-only video of reasonably

sized images.

Fortunately, it is not necessary to perform the complete inverse transform for each

frame in a slowly varying image sequence. The value of an arbitrary pixel p in an image

is determined by a weighted sum of all the basis vectors in the wavelet decomposition that

include p in their region of support. If the weights (i.e., the wavelet coe�cients) of these

basis vectors do not change between frames in an image sequence, then the value of pixel

p will not change either. Therefore, it is not necessary to compute the inverse wavelet

transform for those regions of the image that have not changed between frames. This idea

was �rst put forth in (Andersson et al. to appear).

The basic idea for rapidly decompressing image sequences, then, is to only compute the

inverse wavelet transform for those pixels in
uenced by coe�cients that have change by a

meaningful amount between adjacent frames in the sequence.
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Figure 8 - Reconstructed images for the W6+VLCT Biorthogonal+VLCT and JPEG image
coders.
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4.2 A Simple Frame Di�erencing Video Coder

The simple video coder described herein is shown in Figs. 9 and 10. Let us consider a

sequence of images ffigi=0;1;..., where each fi denotes the ith frame in the sequence. The

di�erence between two adjacent frames is given by

�fi = fi+1 � fi:

�fi is called a di�erence image, and it contains only the change in image content between

frame fi and fi+1 | it does not contain any redundant �rst-order temporal information.

There is spatial redundancy in �fi, however, and this redundancy can be reduced by

application of some wavelet transform W .4 Thresholding can now be performed on the

transformed di�erence image W (�fi) to eliminate image changes that are considered too

small to be meaningful. After thresholding, we now have an approximate transformed

di�erence image dW (�fi) that is extremely sparse. dW (�fi) is then analyzed to determine

which portions of the inverse wavelet transform will need to be performed to reconstruct an

approximation d�fi of the ith di�erence image. This information is then encoded and sent

to the video decoder.

fi ∆fifi + 1

− =

 Forward Wavelet 

Transform
 Threshold 

 Support 

 Analysis 
 Encoder 

W fi( )∆

Figure 9: Block diagram of the video encoder.

Using the information sent by the encoder, the decoder can reconstruct d�fi. Because of
its sparse nature, d�fi can be reconstructed very quickly by computing the inverse wavelet

transform for only those pixels in
uenced by the coe�cients sent by the encoder. We assume

that the decoder has available some approximation f̂i of frame i, so the next frame in the

sequence can be constructed as

f̂i+1 = f̂i + d�fi:
We have implemented a prototype video compression system based on the ideas de-

scribed above and achieved promising initial results. The results of an experiment in which

we compressed 30 frames of the standard Miss America video sequence (the images were

�rst rescaled to 256� 256 pixels) are presented in Table 2. The experiment was performed

on a 66 MHz 80486 computer running the OS/2 operating system, and the entire video

4We note that because the wavelet transform is linear, it does not matter from a theoretical standpoint

if we form W (�fi) by W (fi+1)�W (fi) or by W (fi+1 � fi).
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Figure 10: Block diagram of the video decoder.

Threshold Compressed Compression Transform Decompression Speed PSNR

Size (Bytes) Ratio (sec) (sec) (fps) (dB)

0 172,2278 11:1 0.074 0.157 6.4 40.73

10 150,977 13:1 0.073 0.150 6.6 38.03

20 107,351 18:1 0.061 0.121 8.3 35.06

30 91,365 22:1 0.056 0.115 8.6 32.22

Table 2: Results of Compression experiments on 30 frames of the Miss America video

sequence. The original, uncompressed sequence requires 1,966,080 bytes of storage. All

times and PSNRs are mean values for the entire sequence.

coder and decoder are written in the C programming language. The wavelet we use is an

integerized version of Daubechies' W6.

Performing the complete 2-dimensional inverse wavelet transform takes 0.25 seconds per

frame. Our experiments indicate that at compression ratios of around 20:1, the partial 2-

dimensional inverse transform technique is more than four times faster than the full inverse

transform, and is capable of transforming over 16 image frames per second. This measure-

ment is only of the time required to perform the inverse wavelet transform | it does not

include the time it takes to decode the image data or display the reconstructed image.

Our codec currently uses a combination of �xed and variable length codes for represent-

ing the video data. Our primary concern so far has been increasing the speed of the inverse

wavelet transform, and we have not paid much attention to coding issues. The development

of codes which can be quickly decoded is of major importance, because the time required

for decoding the compressed image data is presently the performance bottleneck of our

experimental decompression system.

5 Concluding Remarks

Basic and applied research in the �eld of wavelets has made tremendous progress in the last

�ve years. Image compression schemes based on wavelets are rapidly gaining maturity, and

have already begun to appear in commercial software/hardware systems. The reconstruction

quality of wavelet compressed images has already moved well beyond capabilities of JPEG,

which is the current international standard for image compression.

Video is the next big challenge for wavelet-based data compression. Our laboratory
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experiments using three dimensional wavelet transforms to compress a 64 � 64 � 64 color

video sequence indicate that visually lossless video compression is possible at compression

rates near 1000:1, but the memory and processor requirements are presently too great to

make such a scheme practical. The technique presented in Section 4 of this paper is a small

step towards a practical video compression scheme, but much research remains to be done.

It is also interesting to note that wavelet research on image compression has had a strong

impact on several areas of numerical analysis, especially in the solution of partial di�erential

equations (Alpert 1992; Alpert et al. 1993; Beylkin et al. 1991). The compression of an

image, which is just a matrix of intensity values, is not really di�erent from compressing

the kernel matrix of a functional operator. The compressed operator is a sparse matrix,

and sparse matrix operations can often be performed orders of magnitude faster than their

non-sparse counterparts. Undoubtedly, this will lead to new results in numerical analysis

that will impact image compression, leading to better algorithms in areas such as computer

vision.
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