
Internship in the Universidad Politécnica de
Valencia : Validation and improvement of a

MANET emulation tool.

Wannes VOSSEN (wanvos@posgrado.upv.es)

June 22, 2010

English : The present document is a detailed report of a five months internship in the
computer networks research group1 of the UPV 2 in Valencia, Spain. The described
work placement is part of the first year of a Master degree in computer networks
and telecommunications (Master STRI3 Toulouse, France). In this report, I will
focus on two aspects: (I) relate the experience of such an international internship
and (II) present the results and conclusions of the achieved work. Readers might be
interested in only one of those two aspects and should consider the table of contents
to sort relevant information.

Español : Este documento es la memoria de una practica de cinco meses en el grupo de
investigación de redes de la UPV, Valencia. Esta practica es parte de un primero
ano de Master en redes y telecomunicaciones (Master STRI, Toulouse, Francia). En
la memoria, describiré dos aspectos en particular: (I) Intentaré transcribir la experi-
encia de tal instancia al extranjero y (II) presentaré los resultados y conclusiones de
mi trabajo. El lector pueda tener interés en uno solo de estos dos aspectos y puede
referirse al index para encontrar su contenido.

Français : Ce document est un rapport détaillant cinq mois de stage dans le groupe de
recherche sur les réseaux informatiques à l’UPV, Valencia, Espagne. Le dit stage
a été effectué dans le cadre d’une première année de master en réseaux et télécom-
munications (Master STRI à Toulouse). Ce rapport ce concentrera principalement
sur deux aspects: (I) il s’attachera à retranscrire l’expérience d’un stage à l’étranger
et (II) il présentera le travail accompli et les résultats obtenus durant le stage. Le
lecteur pourrait n’être intéressé que par un seul de ces deux aspects et devrait se
référer à la table des matières pour trouver l’information souhaitée.

1Grupo de Redes de Computadores. See http://www.grc.upv.es
2Universidad Politécnica de Valencia. see http://www.upv.es
3Systèmes de Télécommunicatons et Réseaux Informatiques. See http://www.stri.net

http://www.grc.upv.es
http://www.upv.es
http://www.stri.net

Contents

I. Personal Experience 7

1. Background and motivations 8

2. The Host University 9
2.1. Universidad Politécnica de Valencia (UPV) 9

2.2. Grupo de redes de computadores . 9

2.3. An internship opportunity . 10

2.4. Technical aspects . 10

3. Objectives & time management 12
3.1. Objectives . 12

3.2. Time management . 12

II. Achieved work 14

4. What is Castadiva ? 15
4.1. MANETs . 15

4.2. Introduction to Castadiva . 15

4.3. Castadiva’s features . 18

5. Objectives 20

6. Results 21
6.1. How to setup the test-bed . 21

6.1.1. Setup the Core . 21

6.1.2. Setup the Nodes . 22

6.1.3. Compile for the routers . 24

6.2. Validation of new functionalities . 25

6.2.1. The execution planner . 25

6.2.2. Routing Plugins . 28

6.2.3. Mobility Plugins . 35

6.2.4. CityMob Import . 39

6.2.5. Minor issues in Castadiva . 44

6.3. Important mobility issues in Castadiva . 44

6.3.1. Bad throughput calculation . 44

6.3.2. Bad ARP emulation with TCP . 46

6.4. Maximal UDP bit rate issue . 47

6.5. Writing a research Article . 49

4

7. Useful software 50
7.1. Netbeans . 50
7.2. Network Simulator 2 (NS-2) . 50

7.2.1. Introduction . 50
7.2.2. Learning about ns-2 . 51
7.2.3. Simulating 802.11g with ns-2 . 51
7.2.4. Setting ranges with ns-2 . 51
7.2.5. Analyzing ns-2 results . 52
7.2.6. Castadiva and ns-2 . 52

7.3. Gnuplot . 52
7.4. LATEX . 53

8. Conclusion 54

9. Thanks 55

Bibliography 57

III. Appendices 58

A. Castadiva’s GUI splash view 59

B. Extending an emulation platform for automatized and distributed evaluation of
QoS in MANETs [2] 61

C. Johann M. Márquez Barja’s implementation for 802.11g in ns-2 70

D. CityMob2 output file example 74

E. Configuration for 802.11g in ns-2 without distance losses 77

F. Configuration for 802.11g in ns-2 with distance losses 80

G. Simple Gnuplot example file 83

H. Mobility Plugin algorithm for the Mobility Plugin System 85

5

List of Figures

2.1. Organization chart of the GRC research group. 10
2.2. Working material with the stacked routers. 11

3.1. Task distribution over time . 13

4.1. Castadiva’s architecture . 16
4.2. Software components for Castadiva . 17
4.3. Castadiva’s simulation window . 18
4.4. Castadiva’ s traffic window . 18

6.1. Possible architecture for the Castadiva Test-Bed 21
6.2. Global design of the Execution Planner . 26
6.3. Simulation edition in the execution planner 27
6.4. ServiceLoader class usage in Castadiva . 29
6.5. Structure of a routing plugin’s .jar file . 30
6.6. ServiceLoader plugin generation in Castadiva 31
6.7. Routing plugin configuration window . 32
6.8. Creation of a .jar ServiceLoader Mobility Plugin 36
6.9. Mobility Plugin configuration window in Castadiva 37
6.10. CityMob 2.0 User Interface . 39
6.11. CityMob importation process . 40
6.12. One node’s X position in a random simulation without error correction . . . 41
6.13. One node’s Y position in a random simulation without error correction . . . 41
6.14. One node’s X position in a random simulation 43
6.15. One node’s Y position in a random simulation 43
6.16. Low CBR UDP throughput for a mobile scenario in Castadiva ans ns-2 . . 46
6.17. Distance between nodes for a mobile scenario. 47
6.18. UDP CBR Throughput comparison between ns-2 and Castadiva 48
6.19. Test architecture for UDP routing on wireless routers 48

6

Part I.

Personal Experience

7

1. Background and motivations

The ERASMUS program allows two European universities to settle an agreement and to
exchange their students for one or two academical semester(s). Achieving such an exchange
is probably a unique experience in one’s life. It gives the opportunity to discover a new
culture. The student is dropped in a totally new environment, with few landmarks, forced
to review his bounds and to open himself to new habits and a different educational system.
It is an opportunity that, in my point of view, can’t be ignored.

For the past 3 years, I have been studying a computer science degree in Toulouse. The
two first years of one’s academical career are - for obvious reasons - not appropriate for
an exchange. During my third year, I reoriented my studies from pure computer science
to networks and telecommunications. As I then entered a new school, I probably was in a
too tricky situation to consider the overload of an exchange. Never the less, I undertook
the preparation of such a project. Achieving exchange is not that common in my home
school. Consequently, there was no specific exchange agreement settled with the university
of Valencia or even with any other fully Spanish speaking university1. Setting up such
an agreement from scratch was quite an heavy task and requested several months of
administrative procedures.

Finally, the reason why I choose Spain for my ERASMUS among other countries is
that I wanted to learn a second foreign language, which I believe is interesting for my
professional career.

1There is a partnership settled with the university of Barcelona but I was told that Catalan was the main
language there.

8

2. The Host University

2.1. Universidad Politécnica de Valencia (UPV)

The UPV is a Spanish public university oriented to sciences and technology. It is spread
over three campuses in the region of Valencia, Spain. It also regroups 37000 students,
2800 teachers and 2200 professionals to offer a large variety of services.

During the first semester of the academical year, I experienced the UPV as a student
and my global impression was quite positive. In particular, I appreciated how students
were considered as the center of any concern: classes did generally regroup a maximum of
20-30 persons and teachers organized tutor sessions in their office twice a week. The whole
forward planning of the semester was very often announced from the very beginning, which
allowed efficient personal organization. The university also provides numerous services like
a very efficient and unified intranet, many sport facilities, conferences, libraries, places to
study and so on.

2.2. Grupo de redes de computadores

The network research group GRC was founded in 2000 and it regroups researchers from the
Computer Engineering Department. Currently, the group’s efforts are focused on Mobile
Ad-Hoc Networking (MANET s) and more precisely on the management of such networks.
For example, it is concerned about routing, security and quality of service in MANET s.

Figure 2.1 shows the organization of the GRC research group. The faculty regroups
several professors, mainly working at the UPV but also coming from other Spanish uni-
versities. Professors have several tasks like research, education and administration. For
example, professors are in charge of PhD students, who are working on their thesis and
participating the research work. Professors can also appeal to Master students as a sup-
port for their research: It is a possibility, for Spanish Master students, to work in their
university’s laboratories and receive specific grants in return. Master students can also
be foreign students who have to perform an internship during their exchange. This is my
situation.

For my every days work in the laboratory, I collaborated with Jorge Hortelano and
Alvaro Torres. Jorge is a PhD student and he is also the creator[1] of the software I
worked on. He introduced me to its functioning and answered many of my questions.
Alvaro is a Master student, he also worked on the program I had to validate. We thus
had to work together as one’s changes could interfere with another’s one. As he had been
working on the software for a longer time, he also answered many of my questions. Alvaro
and I also collaborated to write the research article described in chapter 6.5 on page 49.

9

Figure 2.1.: Organization chart of the GRC research group.

2.3. An internship opportunity

On exchange, one should stay as close as possible to the material he would have studied in
his home university. My classmates in France had to perform a four month internship in
some company. On the occasion of an exchange, it is quite common for a student to work
in a university lab. When I created the exchange agreement, I asked my Spanish exchange
coordinator (Marta Caballero) for such a placement and she put me in touch with Pietro
Manzoni , coordinator of the Computer Networks Group and also dealing with exchange
in the computer science department. A few emails later, we had an overview of what I
could possibly work on.

2.4. Technical aspects

On my arrival, I was assigned to a desktop in the network research lab. The material and
the environment were modern and quite comfortable to work with. We were more or less
6 Master and PhD students working int the laboratory and the atmosphere was pleasing.
One could easily ask another for advice and everybody was always pleased to help.

10

Figure 2.2.: Working material with the stacked routers.

11

3. Objectives & time management

3.1. Objectives

Figure 3.1 shows how I spread my different tasks over the whole internship. Tasks will
be explained with more detail in Part II. For now, I will focus on time management and
objectives.

On my first day, I met Pietro Manzoni, my supervisor. He introduced me to the team
and especially to Jorge, who guided my first tasks: I had to setup my work environment
and get used to the software that I was suposed to validate. Two weeks later, on February
the 10th, I met Pietro Manzoni angain and we set my main objectives for the internship.
My work was theoretically quite simple: validate a few new functionalities of a wireless
simulation test-bed. Nevertheless, we did not know exactly how far their developpement
had been taken.

As shown in Figure 3.1, those objectives finaly spread over the whole internship, with
a few additionnal works like the participation to a resarch article. This is due to the fact
that the functions I had to validate were left in a very early developpement stage, with
no documentation and none of those funcionalities acutally functioned out of the box.
My work finally consisted in a circle of investigating, fixing errors, trying to validate and
investigating again for the new errors.

Each time I focused on a new part of the software, I had to analyse and understand
it. During my first days, the program apeared to me as something huge I would never
understand. Slightly, my knowledge of the program increased and I started assimilating
pieces of the puzzle. After 5 month, I felt a very important progression of knowledge and
effectiveness. Through the present report, I would like to transmit that experience.

3.2. Time management

Something important regarding time management is that I have attended classes during
the entire internship. I attended 9 hours of class every week, homework and projects
represented at least another 9 hours of personal work.

This taken in account, the instructions I received from my home university were to
balance, as good as possible, among those two activities. Pietro Manzoni also warned me
that he would not be watching at my timetable.

I thus had to discipline myself, trying to be as efficient as possible in my university work
in order to be able to spend as much time as possible in the laboratory. I also spent fewer
hours in the laboratory during the exam period, which was the week before the 11th and
15th of June.

Every month, on Wednesday, the whole group meets and discusses the student’s works.
Unfortunately, I had a class on Wednesday, overlapping with the meeting. I gave up one of
those classes to participate one of those meetings, I think it is an important experience to
understand how the laboratory works. When I presented my achieved work, I was pleased
to hear critics and interesting suggestions to deal with my problems.

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

01/0
2/10

08/0
2/10

15/0
2/10

22/0
2/10

01/0
3/10

08/0
3/10

15/0
3/10

22/0
3/10

29/0
3/10

05/0
4/10

12/0
4/10

19/0
4/10

26/0
4/10

03/0
5/10

10/0
5/10

17/0
5/10

24/0
5/10

31/0
5/10

07/0
6/10

14/0
6/10

21/0
6/10

Task / Week

Setup the testbed and the work
environment
Understanding of the program

Investigation and adjustment the
« Execution planner » system

Study of the « NS2 » simulator for
validation purposes
General review of “Castadiva”

Study of “CityMob” for
compatibility with “Castadiva”

Investigation and adjustment of
the “Routing plugin” system

“Castadiva” validation Tests with
NS2

Investigation and adjustment of
the “Import from CityMob” option
Presentation of my achieved work
Participation to a Research article

Investigation of a “UDP
Throughput issue”

Investigation and adjustment of
the “Mobility plugins” system
Documentation writing

Figure 3.1.: Task distribution over time

13

Part II.

Achieved work

14

4. What is Castadiva ?

It is mandatory, for further reading, to understand what Castadiva is. In Section 4.2 ,
I will make a short description1 of it. Please note that a more extended description of
Castadiva is also available, it can be read in the Castadiva Journal [1].

4.1. MANETs

Mobile ad-hoc networks (MANETs) are packet radio networks composed by independent
and heterogeneous stations that cooperate in routing and packet forwarding tasks. All the
nodes which are part of a MANET can act as routers, allowing communication among
several out-of-range end-points. As a MANET ’s nodes can also be moving around, the
the network topology can suffer constant changes. In such situation, dynamic routing
protocols are very interesting to automatically reconfigure routes.

Testing and evaluating MANET management protocols is important to guarantee their
effectiveness in real situations. Researchers have three options to do so: to use simulation
tools, to use emulators, or to use test-beds.

4.2. Introduction to Castadiva

Castadiva is a MANET emulator which provides a cost-effective alternative to simulation
tools. This can be achieved by allowing certain critical components of a simulation to be
real. For example, Castadiva relies on real wireless communications, using IEEE 802.11
interfaces.

1The description is based on my work in a previous article[2]. See Appendix B

15

Figure 4.1.: Castadiva’s architecture

Castadiva’s architecture is shown in Figure 4.1. It is based on two major elements:
(a) The Core, which orchestrates the simulation and coordinates the Nodes; (b) The
Nodes which are able to communicate among themselves, for simulation purposes, using
their IEEE 802.11 wireless interface. Communication among the Core and the Nodes is
performed over a typical Ethernet network. Ethernet allows reduced delays and guarantees
no interferences with wireless signals.

16

Figure 4.2.: Software components for Castadiva

As shown in figure 4.2, the Castadiva core is written with JAVA and can be run on a
simple computer. The Nodes, on their part, must rely on a Linux operating system. For
example, Castadiva’s development team used Wi-Fi routers2 or even Net-books 3. Net-
books offer better hardware performances than routers and can be easily moved around.

Figure 4.2 offers a detailed overview over the protocols used in Castadiva. It represents
the situation where the Core would be a Linux PC and where the nodes would be wireless
routers using a Linux based operating system (OpenWRT). Since the Node devices may
be very specialized (routers, PDAs, ...) and have limited storage resources, we use NFS to
store and access any simulation content on the nodes. The NFS server must be located on
the Core, allowing easy file sharing among the Castadiva software and every Node. Finally,
Secured SHell (SSH) is a good option to control the simultaneous start of a simulation on
every Nodes.

2LinkSys WRT54GL with the OpenWRT Linux based Operating system.
3Asus eee PC 901

17

4.3. Castadiva’s features

Figure 4.3.: Castadiva’s simulation window

Figure 4.3 shows the graphical interface that was designed to easily control the previously
described system. As we can see, it is possible to place each Node on a canvas and to define
its range. According to those ranges, Castadiva makes sure that two out-of-range Nodes
do not communicate, even if their real interfaces are able to do so. Among the options
available in figure 4.3, we can see that some are related to Mobility and Routing Protocols.
Those features are part of my work on Castadiva and will be described in section 6.2 on
page 25.

Figure 4.4.: Castadiva’ s traffic window

When a simulation ends, the traffic window is automatically displayed (figure 4.4). That
window has two purposes: it can be used to configure the communications among nodes
and, later on, to display simulation results.

For a more detailed overview of the Castadiva User Interface, which reflects its features,
refer to Appendix A on page 59. Section 6.1 on page 21 can also help for comprehension, it

18

explains Castadiva through a practical example. The Castadiva Journal [1] is also a good
source for further information.

19

5. Objectives

My objectives for the internship were based on a previous work realized by Ignacio Muñoz
Vera in 2009. Basically, I had to validate his work, making sure that the results generated
with his new functionalities were correct and consistent. But as we did not know how far
his project had been carried out, it was also possible that I would have to fix eventual
errors. The main novelties I had to validate were the following:

• The Execution Planner allows to setup a list for automatic simulations.

• The Routing Plugin System should enable the user to automatically start and stop
any routing plugin on his Access-Points.

• The Mobility Plugin System should allow to generate mobility scenarios.

• The CityMob Importation should allow to import a CityMob random mobility sce-
nario.

Apart from those systems I had to validate, I also had to perform editorial work:

• Participate the writing of a research article dealing with Castadiva.

• Write a report and documentation dealing with the knowledge I gathered along the
internship.

Of course, these are the main tasks and they oriented my work. They led me to achieve
other subsequent tasks like:

• Setup of the test-bed.

• Understanding of the existing program.

• Learning how to use simulation tools in ordre to validate Castadiva’s results.

In the next chapter, each of those tasks is described with more detail.

20

6. Results

6.1. How to setup the test-bed

The following will explain how to setup a computer as a Castadiva Core and five LinkSys
WRT54GL routers as its nodes. In figure 6.1 we can see the exact architecture I used
for my work, it is also the architecture that I will use for this example. In figure 2.2 on
page 11 we can also see a picture of the real test-bed.

Figure 6.1.: Possible architecture for the Castadiva Test-Bed

It is important to note that this example was tested with certain software versions.
Commands, filenames might change with newer versions. Nevertheless the following in-
structions can be extrapolated for a general use, including other types of node devices.

6.1.1. Setup the Core

To implement the core, we need a computer with the following characteristics :

• One Ethernet network card (No Wireless Card needed).

• Support of Network File System (NFS) as a Server.

• Support of JAVA to run the Core program.

• Support of the javac (JAVA Compiler) and jar (Creation of a .jar archive) commands
to use Castadiva’s plug-in system.

In our example, we use a PC with a Debian distribution. Here is how to install the NFS
Server and how to export a directory.

1. Install the NFS Server.

21

1 apt -get install portmap nfs -common nfs -kernel -server

2 dpkg -l portmap nfs -common nfs -kernel -server

3 dpkg -reconfigure portmap

2. Create and export the /CASTADIVA directory.

1 mkdir /CASTADIVA

2 echo "/CASTADIVA 192.168.1.0/255.255.255.0(rw,sync ,no_subtree_check ,

no_root_squash)" >> /etc/exports

3 exportfs -ra

3. Configure the hosts.deny and hosts.allow files.

1 cat /etc/hosts.deny

2 lockd:ALL

3 mountd:ALL

4 rquotad:ALL

5 statd:ALL

1 cat /etc/hosts.allow

2 lockd: 192.168.1.1 , 192.168.1.201 , ...

3 rquotad: 192.168.1.1 , 192.168.1.201 , ...

4 mountd: 192.168.1.1 , 192.168.1.201 , ...

5 statd: 192.168.1.1 , 192.168.1.201 , ...

6.1.2. Setup the Nodes

It is mandatory that the nodes run a Linux based operating system, moreover they should
be able to :

• Support C compilation. A cross-compiler might be a solution.

• Support Network File System (NFS) as a client.

• Have two network interfaces: One supporting Ethernet and the being wireless.

• Support routing (route command) for static routing.

• Support iptables. They are used to drop packets when nodes are logically out of
range but fiscally in range. Which typically occurs with stacked nodes.

In our example, we use LinkSys WRT54GL1 wireless routers with an OpenWRT 2 Linux-
Based operating system.

OpenWRT is a Linux distribution for embedded devices. It is a full operating sys-
tem, based on a Linux kernel, that supports several packages and offers an important
customization level. The operating system is supplied as a pre-compiled firmware that
can be sent to the device using the original manufacturer’s firmware update system.
A detailed and up-to-date tutorial of how to install OpenWRT is available at http:

//wiki.openwrt.org/oldwiki/openwrtdocs/hardware/linksys/wrt54gl. The follow-
ing is a commented summary of the tftp method.

1. Warning: You MUST install the 2.4 kernel before you install any more recent kernel.
Otherwise, you wont be able to flash using tftp anymore.

1A Linux-Based router that costs approximately 50€.//See : http: // www. linksysbycisco. com/ EU/

en/ products/ WRT54GL .
2See http://openwrt.org/.

22

http://wiki.openwrt.org/oldwiki/openwrtdocs/hardware/linksys/wrt54gl
http://wiki.openwrt.org/oldwiki/openwrtdocs/hardware/linksys/wrt54gl
http://www.linksysbycisco.com/EU/en/products/WRT54GL
http://www.linksysbycisco.com/EU/en/products/WRT54GL
http://openwrt.org/

2. Download the desired version of the firmware on the OpenWRT website. It should
come as a .bin file. For example: openwrt-wrt54g-squashfs.bin.

3. Install a Trivial File Transfer Protocol (TFTP) client on the computer. For example,
atftp is a good option for Debian.

4. Configure your computer’s network card to 192.168.1.x . Where x 6= 1. This
is important, the router will be automatically configured to 192.168.1.1 after a
successful firmware update and you would have an IP conflict.

5. Unplug the power-cord of the router and make sure the router is connected to the
computer’s network. Using a switch, for example.

6. Run your tftp program and run the following command

tftp > connect 192.168.1.1

tftp > mode octet

tftp > trace

tftp > timeout 1

tftp > put openwrt -wrt54g -squashfs.bin

7. Immediately plug the router’s power-cord: The transfer should start soon.

You might have to repeat those steps a few times before you succeed. You may want to
vary the time between the last tftp command and the router’s start-up. If you do not
succeed with the TFTP method, It might be because of a previous wrong installation
as stated in step 1. If this happens, I recommend to use the mtd command line method
described in the official OpenWRT wiki.

We now need to establish a first connection, using telnet, in order to set the root password
on the router. Then, we will need to configure the routers for Castadiva. As I had 5
routers to manage and as I have had to reinstall routers several times to obtain a clean
configuration, I designed a script shell that automates the installation of the router. That
script shell is a good example to understand how to configure a router.

1 #!/bin/sh

2
3 CASTADIVADIR="/castadiva"

4 NFSDIR="/castadiva/nfs"

5 GW="192.168.1.2"

6 ROUTER="201"

7
8 # Creation of the castadiva directories

9 mkdir $CASTADIVADIR

10 chmod 0777 $CASTADIVADIR

11
12 mkdir $NFSDIR

13 chmod 0777 $NFSDIR

14
15
16 # Configuration of temporary internet access for package install

17 route del default

18 route add default gw $GW

19
20 echo "nameserver 158.42.249.8" > /etc/resolv.conf

21
22 # NFS install

23 opkg update

24 opkg install kmod -fs-nfs

23

25
26 # Set automatic NFS mount at boot

27 echo "mount -t nfs $GW:/ CASTADIVA $NFSDIR -o nolock" >> /etc/rc.d/S90custom

-user -startup.sh

28 chmod 0777 /etc/rc.d/S90custom -user -startup.sh

29
30 # SSH Public -Key configuration

31 cat id_*.pub >> /etc/dropbear/authorized_keys

32 chmod 0600 /etc/dropbear/authorized_keys

33
34 # Network configuration

35 cp network /etc/config/network

36 cp system /etc/config/system

37 cp wireless /etc/config/wireless

38 cp firewall /etc/config/firewall

39
40 echo "Install successfull , please reset router"

The script and its attached files can be copied on the router using the scp -r3 command
and it should be run on the router using ssh. Let us now review the different files and
commands that are used in this script.

• As we configured a default gateway, NAT and routing should be enabled on the
gateway so that an Internet connection can be established. The DNS value mus
point to a valid DNS server.

echo "1" > /proc/sys/net/ipv4/ip_forward

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

• opkg is the packet manager in the OpenWRT systems.

• /etc/rc.d/S90custom-user-startup.sh is OpenWRT ’s specific file for user commands
at startup.

• The .pub file is a public key for SSH. It is recommended to configure Open SSH
public key authentication among your Core and your routers. That will prevent you
entering a password each time you connect to a router. To generate a public key for
root on the core computer, do the following as root.

ssh -keygen -t rsa

Set no paraphrase.

• The files in /etc/config are used to properly configure the router. Those files are
read at router’s start-up and overwrite any common Linux configuration. I would
recommend to copy and configure those files from the first updated router, as they
can change from one to another version.

6.1.3. Compile for the routers

Now that the routers are correctly configured, there is one last step we have to fulfill
to obtain a Castadiva-ready system. In order to simulate traffic among nodes, Cas-
tadiva uses binary files and runs them directly on the nodes. Those files are simple TCP
and UDP clients4 and servers, written in C. We thus need to compile those files for our

3scp allows to transfer files over ssh. -r stands for recursive, it allows to copy entire folders.
4The source files should be provided with the program, they should be located in a “bin” directory.

24

OpenWRT operating system. To do so, we will use a cross-compiler that can be found
on the OpenWRT site5. Make sure that the compiler corresponds to your version. In
the previously downloaded archive, the cross-compiler is located at staging dir/toolchain-
mipsel gcc3.4.6/bin/mipsel-linux-gcc.

./mipsel -linux -gcc -DDEBUG /CASTADIVA/bin/UdpFlowClient.c /CASTADIVA/bin/

dacme.c -o /CASTADIVA/bin/UdpFlowClientMIPS

./mipsel -linux -gcc /CASTADIVA/bin/UdpFlowServer.c -o /CASTADIVA/bin/

UdpFlowServerMIPS

Finally, the compiled files must be placed in the NFS SERVER PATH/bin/ directory.
Note that there are MIPS and X86 files, this stands for the node’s processor’s architecture.

6.2. Validation of new functionalities

6.2.1. The execution planner

6.2.1.1. Introduction

An overview of the current execution planer’s Graphical Users Interface (GUI) can be
found in appendix A on page 59. It was designed to allow automatic execution of various
and possibly different simulation scenarios. The user can generate a list of previously
saved scenarios, indicate how many times each simulation should be run and let the system
process his list. Results for each simulation are written in a text file.

The version I was asked to validate offered almost the same interface than the one shown
in appendix A. Unfortunately, I did not manage to get it working, it is to say to load a
scenario nor to run the simulations. All my intents were solved with some JAVA errors.

I thus started looking for what could be wrong and finally reviewed most of the source
code. Alvaro also participated that task as he needed the execution planner functionality
for his own work. Particularly, he added the deferred simulation start system and the
Save/Load list function.

6.2.1.2. Design

I tried to understand and conserve as much as possible the existing code and design of the
execution planner.

Figure 6.2 shows a very general overview of the current execution planer’s functioning.

5See http://downloads.openwrt.org/kamikaze/8.09.2/brcm-2.4/OpenWrt-SDK-brcm-2.

4-for-Linux-i686.tar.bz2.

25

http://downloads.openwrt.org/kamikaze/8.09.2/brcm-2.4/OpenWrt-SDK-brcm-2.4-for-Linux-i686.tar.bz2
http://downloads.openwrt.org/kamikaze/8.09.2/brcm-2.4/OpenWrt-SDK-brcm-2.4-for-Linux-i686.tar.bz2

Figure 6.2.: Global design of the Execution Planner

LoadScenario() and AllSimulationSteps() are two main functions of Castadiva. What
the Execution Planner does, is to take advantage of Castadiva’s Save and Load function-
alities in order to load and process many simulations in a loop. Once the scenario is loaded
and when its simulation ends, we need to intercept its ending instructions (CheckSimula-
tionThreads) and write the results to a file (PrintTraffic). Eventually we do also need to
start the next run or simulation.

Further information for more detailed comprehension can be found directly into the
ExecutionPlanner.java file as I fully commented any piece of code I worked on.

6.2.1.3. Usage

There are two options to add a simulation to the execution planer’s simulation list : You
can create a new scenario (1) or load a previously saved one (2).

1. If you decide to create a new scenario, the simulation window will be displayed and
you will be able to setup the scenario to your needs. You will then need to save it:
what the execution planner does, basically, is to use Castadiva’s load function for
each simulation of it’s list. If you do not save the scenario, Castadiva wont be able
to load it.

2. To load a previously saved scenario, you need to select either the folder containing
your scenario or the scenario folder itself in the file selector. When a scenario was
successfully loaded, it is displayed in the simulation window. Be careful that if you
make any changes on the scenario, they wont be kept if you simply press the Accept
button. You need to use the save option and erase the previously loaded file or create
a new one in order to keep your changes.

Important note: In points 1 and 2 I introduced how the execution planner saves and
loads scenarios. Consequently, you should also notice that, if you use the execution
planner to load any scenario, your previous settings and scenario will be erased.

Once a scenario is loaded, a new line is added to the execution planner. To edit the
line and change the source folder, the results folder or the amount of runs, use the Edit
Simulation button (See figure 6.3).

26

Figure 6.3.: Simulation edition in the execution planner

The Source folder is the path to your scenario, and the Result folder will contain the
simulation results. The results are written in a text file named X definedTraffic.txt where
X corresponds to the run. For example, if you have 10 runs in your simulation, the first
run will be written in the [Result Folder]/Iterations/10 definedTraffic.txt and the last run
to [Result Folder]/Iterations/1 definedTraffic.txt.

The Load list and Save list buttons allow to save and load the execution planer’s simu-
lation list to a file. It might be interesting to save a large list in order to save time in the
case something goes wrong during simulation.

The Start simulation at checkbox offers to defer the execution according to the system
time : the execution planner will figure out how long it must wait before the configured
time of the day (Hours and Minutes). The simulation can thus be planned up to 24 hours
after it’s configuration. Note that the real start time can be delayed of up to one minute
and that the timer can be canceled as long as the simulations are not started.

Finally, the Generate Simulations button starts the execution planer’s process. During
simulation, the runs will be decremented and the Status information for each row will be
updated. The status can take one of the following values :

• Ready : The scenario is ready to be simulated.

• Done when the simulations where successfully played for this scenario.

• Waiting for the AP... when Castadiva is collecting simulation information. It means
that the simulation is ending. If the Execution Planner gets blocked on this message,

27

it might mean that something went wrong during simulation and that it is not able
to collect the simulation information.

• Simulation in process... : the scenario is being simulated.

• Canceled : the scenario’s simulation was interrupted.

When simulating the list, the Reset Access Points is enabled. Clicking this button simply
sends a reboot instruction to every access point. This might be a solution to unlock a
problematic simulation or cancel the execution planer’s process.

6.2.1.4. Validation

As commented in the introduction, I could not validate the original version of the Execution
Planner as I did not succeed to run it. Taken in account the absence of any comment in
the code, I would say the Execution Planner was in a beta stage. It might have functioned
but probably in a very precise situation with very precise arguments.

The execution planner has suffered many changes since the initial version and we dis-
covered new problems later on. The difficulty with the execution planner is that it needs
to take in account any possibility of Castadiva : Plugins, routing protocols, types of traf-
fic... All those functionalities are spread all over the original program. I mean that it is
not sufficient to call a loadCastadiva() function and later on startSimulation(). There are
numerous settings that have to be separately taken in account.

As I also commented in the introduction, Alvaro made a regular use of the execution
planner for his own work. Most of the time it worked just fine and the benefits of the
execution planner are really significant when the amount of simulations increases. Never-
theless, with over 200 runs spread over various simulations, a problem occurred and I did
not manage to solve it until now. It might be something related with memory overflow.

6.2.2. Routing Plugins

6.2.2.1. Introduction

With MANETs, mobility can make links among nodes unstable. It is important to have
strong routing protocols to reconfigure routes in a short time and allow efficient commu-
nication. In Castadiva, there are two options for routing:

1. Static routing, it is to say that routes are calculated with Castadiva for the whole
simulation and automatically set on the nodes. For now, Castadiva only supports
the OPTIMUM static routing which is based on the Dijkstra algorithm.

2. Dynamic routing. In such case, nodes are responsible for the routing process. In
other words, each access point must run its own and appropriate routing software.
Routing is thus depending on the routing software available for the Access-Point ’s
platform.

Point 1 is implemented since the very beginning of Castadiva. It is based on some route
instructions that are sent to the Access-Points. Point 2 was also available in legacy versions
of Castadiva : the user could simply install and run routing protocols on all of his Access-
Points.

Routing Plugins allow something simple but also very useful. When a routing plugin is
configured, it receives the instructions of how to start and stop a specific routing protocol
on the Access-Points. It can also replace one configuration file on the Access-Points.

28

Figure 6.4.: ServiceLoader class usage in Castadiva

My work here was to validate a previously implemented Routing Plugin System. Un-
fortunately, it was absolutely not functional for some reasons I will describe later in this
section. I thus reviewed the whole system in order to obtain what we just described.

Important note: Routing Plugins do not install any routing software on the Access-Points.
It is mandatory to previously install the adequate routing software on every Access-
Point. The only thing routing Plugins can do is to send the start and stop instruc-
tions for the routing protocol and replace one configuration file on the Access-Points.

6.2.2.2. Routing on OpenWRT

With OpenWRT based Access-Points, a few routing protocols are originally supplied
among the original packages. For example, we have: OLSR, Babel, B.A.T.M.A.N, BGPv4,
BGPv4+, BGPv4, IS-IS, OSPFv2, OSPFv3, RIP, RIPNG.6

It is also possible to compile some more protocols for OpenWRT Kamikaze but this is
a quite difficult and random process.

6.2.2.3. OLSR

OLSR7 (Optimized Link State Routing) is one of the routing protocols available for Open-
WRT and designed for MANETs. It is also the protocol that was used for the routing
plugin system’s development.

6.2.2.4. Design

The following describes the technical implementation of Routing Protocol Plugins in Cas-
tadiva. First of all, you should know that the design of the Routing Plugin System is quite
complicated compared to what it actually does. This is probably because of the Mobility
Plugin System (See section 6.2.3). The Mobility Plugin System has higher requirements
than the Routing Protocol Plugin System but they were designed together and do therefore
share a similar design. In the validation section I will make suggestions for an alternative
design.

The Java programming language offers a mechanism to allow a user to insert custom
code directly into a compiled program. More generally, the term of Plugin can be used.

6This is a non exhaustive list for the Kamikaze version of OpenWRT. It is the result of the opkg list |
grep routing command.

7See http://www.olsr.org for further information

29

http://www.olsr.org

Figure 6.5.: Structure of a routing plugin’s .jar file

As shown in figure 6.4, the ServiceLoader8 class can load a .jar archive directly into the
a Castadiva running program. The .jar archive contains a special set of files as shown in
figure 6.5.

The structure of the .jar file is depending on the structure of the Castadiva source folder
and it contains several files:

• lib.IPluginCastadiva is related to the ServiceLoader class and must point to the class
(regarding packages) where the plugin should be loaded. In our example, it would
contain the following line: castadiva.Plugins.olsrd

• MANIFEST.MF is an automatically generate file.

• olsrd.class contains the plugin implementation. It will be described further on.

• IPluginCastadiva.class is the abstract class that olsrd.class implements.

• olsrd.conf has no direct relation with the plugin system. olsrd.conf is the configura-
tion file for the routing protocol and I put it into the archive to have a unique plugin
file.

The .class file naturally comes from a .java source file which must match a previously
established pattern. In Castadiva, the pattern is an abstract class named IPluginCastadiva.
It can be found in the lib package and suggests the following methods :

• getBin() : Where is the binary file located?

• getFlags() : What arguments should be used to run the binary file?

• getPathConf() : Where is the configuration file located?

• getConf() : How is the configuration file named ?

• getKillInstruction() : How to stop the protocol from running?

The user must implement those methods for the routing protocol he wants to use. To do
so, the Custom Routing Protocol user interface allows the user to set String values for each
of those function, except for the kill instructions : to stop a running protocol, Castadiva
uses the following command : killall protocol where protocol is the binary file passed as
getBin(). See figure 6.6.

8See Javadoc for further information and tutorials.

30

Figure 6.6.: ServiceLoader plugin generation in Castadiva

Important note: The user does not have to compile or package anything. This is done au-
tomatically by Castadiva, using the javac and jar system commands. This supposes
that the javac and jar are available on Castadiva’s host system.

6.2.2.5. Usage

How to setup a routing protocol on an Access-Point depends on its operating system. On
an OpenWRT operating system, OLSR can be installed using the following commands.

opkg update

opkg install olsrd

Nevertheless, there are a few points that should be considered on every system to guar-
antee compatibility with Castadiva.

• The routing protocol should not start automatically with the Access-Point. In our
example, the following command allows to enable or disable the protocol on router’s
startup /etc/init.d/olsrd [ENABLE|DISABLE]. Note that it is also possible to con-
figure startup settings in /etc/rc.d

• The routing protocol must be configured for the correct interface. With OLSR on
an OpenWRT operating system, the interface can be selected in /etc/config/olsrd.

• It might be interesting to backup the original protocol configuration file. While using
a plugin for the first time, Castadiva may erase that file. It is also interesting to
use the original configuration file as a basis for custom configuration. With OLSR
on an OpenWRT operating system, the olsrd.conf configuration file is located in :
/var/etc/olsrd.conf

To ease compilation of new Routing Protocol Plugins, Castadiva offers a Graphical User
Interface (GUI). Let us review each option offered by figure 6.7.

The Name field allows us to identify the protocol and it’s configuration. It must be
unique and if an existing name is re-used, it will be overwritten. Bin must point to the
location of the binary file, on the Access-Point, which allows to start the routing protocol.
Note that the whole path must be given and that the last part of that path, which should
be the filename, is also used to kill the protocol when the simulation ends. This is done
trough the killall binName command. Therefore, flags will be inserted just after Bin and
for protocol startup only. Configuration file content is the content of the configuration file
that will be written in the Path protocol.conf, on each Access-Point.

Important note: The automated compilation uses certain files in the source (/src) folder
of the project. Make sure that the following constants are correct in Castadiva-
Model.java:

• PLUGIN WORKFOLDER = ”pluginTemporaryFiles”; is the name of the temporary
folder that is created for compilation purpose.

31

Figure 6.7.: Routing plugin configuration window

32

• PLUGIN JAR FOLDER = ”src/castadiva/Plugins”; is the path to the Plugin folder,
where .jar files are copied after compilation and where Plugins are loaded on startup.

• PLUGIN INCLUDE FOLDER = ”src/lib”; must point to the folder containing the
IPluginCastadiva.java abstract class.

6.2.2.6. Troubleshooting

The following is presented as a Question - Answer list.

1. I just installed or used a custom routing protocol on my Access-Points.
Now, I can no longer execute a simulation with the NONE routing set-
tings.
Two things should be checked. First, the routing protocol should not start auto-
matically when your Access-Point starts. See section 6.2.2.5 to disable the routing
protocol on startup. Secondly, try to run the route command on your access points.
A previous simulation may have stopped unexpectedly and did not stop the rout-
ing protocol. Use the killall protocolBinFileName command to make sure that the
protocol is no longer running.

2. After I tried to configure a plugin, Castadiva wont launch anymore.
Try removing the .jar file from the plugin directory

3. A folder is created in Castadiva’s execution directory. What about it?
A folder usually named pluginTemporaryFiles is created to compile and then package
the plugin. This folder should be deleted automatically and it can be harmlessly
deleted at any time.

4. I just created a new routing protocol plugin but it does not work prop-
erly.
There can be many reasons for a plugin not to work. Nevertheless, there are a
few recurrent things you can try. First, consider the plugin as the execution of the
following command. Your specific commands can be found in /CASTADIVA/in-
structionsForNodeX.

1 cp /castadiva/nfs/olsrd.conf /etc/olsrd.conf

2 #Start routing protocol.

3 /usr/sbin/olsrd -d 0

4 #Wait for the end of simulation.

5 sleep 70

6 #Kill the protocol

7 killall olsrd 2>/dev/null

8 #Clean protocol configuration file

9 rm /etc/olsrd.conf

Try to run each command separately, with ssh, to find out where the problem is.

5. The routing protocol is correctly activated but simulation results are not
consistent.
Consider that most routing protocols require time to exchange routing information
and establish routes. Try to configure traffic a reasonable time after the simulation
starts.

33

6.2.2.7. Validation

As previously commented, the original program could not be validated as it was unable
to generate any plugin. A deep analysis of the code revealed several errors :

1. Paths were hard-coded into the program. Therefore, I introduced global variables to
define the execution environment and give more flexibility to the program.

2. Some folders where required for the plugin creation and were not automatically
generated. The whole structure for plugin creation was finally reviewed. Temporary
folders are now deleted after each plugin creation.

3. The initial plugin system did not remove any temporary file. As a result, any plugin
contained all the files generated for all the previously generated Plugins. Currently,
a single folder (PLUGIN WORKFOLDER) is created and removed for each plugin
creation.

4. The initial plugin system was unable to handle any configuration file of more than
one line. It was also unable to handle odd “ symbols. As each plugin contained all
of his ancestors (see 3), I could find out that the typical “asdfasdfasdfasdf” chain
was recurrently used to test the Configuration File Content text area. Any carriage
return crashed Castadiva. This was solved using a separate protocol.conf file to
store the protocol configuration data. I also included the protocol.conf file into the
jar archive in order to have a single file for a plugin. Moreover, it allows to easily
modify the configuration file.

5. The code was partly Spanish written and there was practically no comment. We
can suppose that it was still under development. I translated the code and wrote
comments for the whole routing plugin functionality.

6. The Flags text filed was not used in the program. It is now usable.

7. The configuration field was removed by the program after the simulation. If the
simulation failed, the configuration file was not reset. As for any other simulation
element, I planned the configuration file removal using a sleep command.

8. The routing instructions were sent too early. The routing protocol was started seven
seconds before the client and visibility settings. This was no problem with static
routing as routes did not change along the simulation. Moreover, separating those
instructions was interesting to reduce the Access-Point’s load. But with dynamic
routing Plugins, the routing protocol had 7 seconds to initialize itself with no visi-
bility restrictions. As the plugin system should be generic for any routing protocol,
it is not possible to evaluate the initialization time. The initialization time should
thus be part of the simulation.

I made a few simple tests in order to check the creation of a plugin and the loading/un-
loading of a Routing Plugin during a simulation. Therefore, I aligned 5 nodes so that each
node only saw his direct neighbor. I then connected to every Access-Point using SSH and
checked that the routes were set correctly using the route command. Finally, i connected
to the lefter Access-Point and ran the traceroute command to the righter one. The results
are correct :

root@router1 :~ traceroute 192.168.2.205

traceroute to 192.168.2.205 (192.168.2.205) , 30 hops max , 38 byte

packets

34

1 192.168.2.202 (192.168.2.202) 2.370 ms 2.953 ms 8.983 ms

2 192.168.2.203 (192.168.2.203) 5.417 ms 4.306 ms 5.376 ms

3 192.168.2.204 (192.168.2.204) 6.888 ms 6.809 ms 6.434 ms

4 192.168.2.205 (192.168.2.205) 8.055 ms 9.685 ms 7.111 ms

Even though the previous test succeeded, the validation of the Routing Protocol Plugin is
not achieved, it would probably be interesting to try to implement another protocol. I was
suggested to implement AODV but I did not succeed as there is no official implementation
for AODV in OpenWRT Kamikaze.

Let us finally comment the design of the Routing Plugin System. Using the ServiceLoader
class to simply store a few text lines is probably a very complicated way to enable Routing
Plugins in Castadiva. A simple text file would have been an easier solution. Moreover,
it would be safer as it would not require to compile and package the plugin files. Calling
system commands might lead to cross-platform compatibility issues.

Also to make it more flexible, the routing plugin system could be replaced by a larger
system that would simply allow the execution of custom user code before and after a
simulation.

6.2.3. Mobility Plugins

6.2.3.1. Introduction

I previously commented the plugin concept in section 6.2.2 on page 28. A Mobility Plugin
is supposed to enable custom mobility pattern definition in Castadiva. In other words,
Mobility Plugins can be configured to add controlled and dynamic mobility to Castadiva’s
scenarios. In previous versions ,Random Mobility already was an option, as well as manual
mobility which was not handled by Castadiva. Controlled mobility allows the usage of an
algorithm to define the positions of the nodes during the simulation. The Mobility Plugin
system’s dynamism comes from the the possibility to use variable parameters like the
amount of nodes, the maximum speed in the algorithm and so on.

The following section will describe the design, usage and validation for the Mobility
Plugin System.

6.2.3.2. Design

As for Routing Plugins, the Mobility Plugin System is based on the ServiceLoader class
which allows to insert code into a running program. Figure 6.8 on the next page shows
how to create a .jar plugin file that can be loaded using the ServiceLoader class. The
process is quite similar to the one described for routing Plugins (6.2.2.4 on page 29) but
it is slightly more complicated regarding two points.

1. The MobilityPluginWrapper class has some dependencies with Castadiva’s files. There-
fore, we need to copy those files, compile them and insert them in the .jar package.
To avoid any confusion for Integrated Development Environment like NetBeans which
scan folders for .java files, those files are stored as .txt files.

2. The Mobility plugin system is based on a wrapper. A wrapper that is nothing more
that the final .java file with a few /*code*/ and */name*/ tags that should be
replaced with the user code.

As for routing Plugins, mobility Plugins are automatically generated and packaged.
They rely on the jar and javac system commands.

35

Figure 6.8.: Creation of a .jar ServiceLoader Mobility Plugin

Important note: The automated compilation uses certain files in the source (/src) folder
of the project. Make sure that the following constants are correct in Castadiva-
Model.java:

• PLUGIN WORKFOLDER = ”pluginTemporaryFiles”; is the name of the temporary
folder that is created for compilation purpose.

• MOBILITY PLUGIN JAR FOLDER= ”src/castadiva/MobilityPlugins”; is the path
to the Plugin folder, where .jar files are copied after compilation and where Plugins
are loaded on startup.

• PLUGIN INCLUDE FOLDER = ”src/lib”; must point to the folder containing the
IPluginCastadiva.java abstract class.

6.2.3.3. Usage

The Mobility Plugin System is quite simple to use when it is correctly understood. Fig-
ure 6.9 shows the unique user interface that can be used to generate a custom mobility
plugin.

In the upper part of the figure, we can see the header of a JAVA function. The variables
shown in that header are the one that the user can use in order to design his algorithm.
The only requirement for the final algorithm is that it entirely fills the NodeCheckPoint[][]
nodes matrix. In order to create a NodeCheckPoint instance, the NodeCheckPoint class
can be used as follows:

NodeCheckPoint checkPoint = new NodeCheckPoint(float XPosition ,float

YPosition ,float ZPosition);

After the Generate Plug-in button was pressed, the program will try to compile the
code. If there is any compilation error, it is displayed in a special window.

The second part of the Mobility Plugin System takes place in the Simulation window9.
First of all, the Mobility Plugin should be available in the Mobility Model drop-list. Then,
it is important to configure the different parameters that are used in the Mobility Plugin:
Min Speed, Max Speed, Pause and Simulation time. Finally, pressing the New Simulation
button will show the node’s movement on the canvas. Be aware that this is not a live replay

9See appendix A for more information about Castadiva’s GUI.

36

Figure 6.9.: Mobility Plugin configuration window in Castadiva

37

and that it is not synchronized with the real simulation. After a simulation was successfully
processed, you can review each second of the simulation using the Show feature.

Important note: Even if the maxSpeed parameter is not set in the algorithm, it is manda-
tory to set a positive Max Speed in the Simulation interface. Otherwise, mobility is
not used.

6.2.3.4. Validation

As previously commented, the original program could not be validated as it was unable
to generate any plugin. A deep analysis of the code revealed several errors :

1. Some variable names were displayed with different case and sometimes different
names in the graphical interface. The variable pause was also proposed but not
present in the code.

2. When several plugins were available in the plugin list, whatever plugin was selected,
the first plugin (alphabetical order) was always loaded and used. This came from
a bad usage of the ServiceLoader class. I corrected this issue by cleaning up and
recoding the Plugin structure.

3. Even when two nodes remained out of range during the whole simulation, they had
some data transferred during the simulation. This problem came from an error
with the synchronization between client startup and visibility settings. With static
simulations, it was not a problem to set visibility instructions 10 seconds before the
simulation started: those instructions did not change during the whole simulation.
On the contrary, it allowed to spread the Access-Points system load on simulation
startup. With mobility, visibility instructions are dynamic and change over time.
Those 10 seconds of delay introduced incoherent simulation results: visibility settings
were always 10 seconds earlier than traffic instructions.

4. totalTime = 111; was hard-coded somewhere in the code. This caused an out of
array exception if the simulation lasted less than 111 seconds.

In order to validate the Mobility Plugin System, I generated a mobility scenario that
makes nodes move in diagonal with different speeds for each node. The JAVA code for
that algorithm can be found in Appendix H on page 85. I then manually calculated the
theoretical position of a few nodes at a determined time and checked it was well imported
in Castadiva. This is probably not a full validation of the Mobility Plugin System, and it
would probably be interesting to compare results. But I did not succeed in obtaining any
valid results with mobility in Castadiva.

Important note: The Mobility Plugin system is functional but the results of any subse-
quent simulation can not be considered as valid. This is because of a problem that
was discovered in the Access-Point ’s client and server programs, in particular with
TCP. This problem is affecting all mobility in Castadiva, even random mobility. The
issue was not fixed but it is detailed in section 6.3.1 on page 44.

38

Figure 6.10.: CityMob 2.0 User Interface

6.2.4. CityMob Import

6.2.4.1. Introduction

CityMob10 (See figure 6.10) is a mobility pattern generator for VANET s (Vehicular Ad-hoc
NETworks).It allows to generate random mobility scenarios in ns-2 format. An example
of CityMob output can be found in appendix D on page 74.

Next sections will test, fix, explain and validate CityMob importation in Castadiva.

6.2.4.2. Design

This section shows the current design of the CityMob importation system. The global
behavior and design respects Ignacio Muñoz Vera’s initial work but the implementation
of each function suffered many changes, as it corrects a very important semantic errors,
as well as a syntactic errors11.

Figure Figure 6.11 on page 40 shows how Castadiva deals with CityMob files (city-
Mob.out) and converts them into a set of Access-Points and a mobility matrix, which is a
matrix that contains the position of each node at every second of the simulation.

When a CityMob importation is processed, Access-Points parameters like its name, its
IP address, ..., can come from two possible sources:

1. A first and priority option is the aps.txt file which can be configured in the configu-
ration folder of Castadiva. That file contain settings for a list of node. The first line
will be used for the first node and so on. Note that aps.txt is similarly used with the
node creation utility.

10See: http://www.grc.upv.es/Software/citymob.html
11See 6.2.4.4 for more details about the errors

39

http://www.grc.upv.es/Software/citymob.html

Figure 6.11.: CityMob importation process

2. A second option is to use Castadiva built-in default values, they are defined in
CastadivaModel.java’s header.

Let us now comment the most important function in figure Figure 6.11 on page 40 :
translateNSDataToMobilityMatrix(). That function takes a list of movement instructions,
for example :

#Node 1: TARGET REACHED (540 .0, 1200.0) (75 .06782928526441 Km/h)

$ns_ at 52 .18759071966314 "$node_ (1) setdest 540.0 1200.0 75 .06782928526441

"

and converts it to a Mobility Matrix 12 which knows for every node its position at any
second of the simulation. It is important to notice the granularity of the Mobility Matrix,
one second, which is different from the granularity of the CityMob output file. This will
lead to approximations.

In order to generate the Mobility Matrix, we will need to take in account that a move-
ment can be interrupted by another movement instruction. Therefore, while reading each
instruction, we will write it entirely to the mobility matrix. If no later instruction inter-
feres with the current instruction, the matrix is consistent. If a later instruction interferes,
it will will consider the position of the node at the instructions time rounded to one sec-
ond. Here, we have an approximation that is transmitted along the whole simulation. The
importance of such an approximation can be seen in figures 6.12 and 6.13 on the facing
page.

It is probably possible to obtain strictly correct results but it would require important
changes on the original program. In order to reduce the error, I simply added the following

12It would be a matrix with numberOfNodes rows and totalSimulationTime columns. The same matrix is
used for Random Mobility and Mobility Plugins.

40

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

N
od

e'
s

X
 c

oo
rd

in
at

es

Simulation progress (Seconds)

One node's X position in a random simulation, depending on simulation progress

NS node 1
Castadiva node 1

NS node 2
Castadiva node 2

NS node 3
Castadiva node 3

NS node 4
Castadiva node 4

NS node 5
Castadiva node 5

Figure 6.12.: One node’s X position in a random simulation without error correction

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

N
od

e'
s

Y
 c

oo
rd

in
at

es

Simulation progress (Seconds)

One node's Y position in a random simulation, depending on simulation progress

NS node 1
Castadiva node 1

NS node 2
Castadiva node 2

NS node 3
Castadiva node 3

NS node 4
Castadiva node 4

NS node 5
Castadiva node 5

Figure 6.13.: One node’s Y position in a random simulation without error correction

41

condition : if we are processing the last move of the node (which would be the last second
of his movement), then we set the node at his theoretical destination (which is given by
the movement instruction). Results for the same simulation can be found in figures 6.14
and 6.15 on the next page

Important note: The CityMob user interface show speeds as Km/h. In the generated ns-
2 files, comments for each movement instruction also announce Km/h. The same
values are inserted in the ns-2 ’s code beneath the comment (see code in section
6.2.4.2). As ns-2 handles meters/seconds13, there probably is something wrong. For
now, we have configured Castadiva so that it behaves similarly to ns-2.

6.2.4.3. Usage

There is no particular requirement to import a CityMob scenario to Castadiva. As it is the
current version, we used CityMob 2 for the development of this functionality. Importation
might no longer work if the CityMob output file structure undergoes any change.

Once you generated the scenario, use the import > CityMob menu and select CityMob’s
output file. If you want to set custom parameters for the imported Access-Points, configure
the configuration/aps.txt file in Castadiva’s folder to do so. Each line of that file represents
an Access-Point, the CityMob importation system will consider line one for it’s first Access-
Point and so on. Finally, note that a CityMob mobility model is not saved when the save
function is used in Castadiva. You will thus need to load the CityMob file before you load
a scenario.

6.2.4.4. Validation

The original CityMob import did not work out of the box. It assumed (hard-coded) that
the nodes where named with a string followed by a number from 0 to N-1. For example, my
nodes where named from 1 to N as recommended in the Castadiva Journal [1]. This was
corrected simply removing this requirement and calling nodes with their number instead
of their name.

Castadiva’s results were then compared to ns-2 for a random UDP scenario: results were
very different. Indeed, the original importation misunderstood CityMob, it assumed that
when a movement instruction was given at time T to move from position A to position
B in C seconds, the node would necessarily be in position B at time T+C. In fact, a
node can receive new instruction during its travel. In such case, it interrupts its current
movement and starts moving according to the new instructions.

Correcting this made me review a very large portion of the code. Investigating the
existing code was a hard task as there were no comments. I thus fully commented the
CityMob import system.

In order to validate my results, I finally compared Castadiva’s new node positions to
ns-2 ’s ones. As shown in figures Figure 6.14 on page 43 and Figure 6.15 on page 43, results
are now quite conclusive. Note that the slight differences come from Castadiva’s sampling
which only occurs every second.

Important note: The CityMob importation is functional and correct but the results of any
subsequent simulation can not be considered as valid. This is because of a problem
that was discovered in the Access-Point ’s client and server programs, in particular
with TCP. This problem is affecting mobility in Castadiva since it’s very beginning
and is detailed in section 6.2.3.4 on page 38.

13See http: // www. isi. edu/ nsnam/ ns/ tutorial/ section IX.2.

42

http://www.isi.edu/nsnam/ns/tutorial/

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

N
od

e'
s

X
 c

oo
rd

in
at

es

Simulation progress (Seconds)

One node's X position in a random simulation, depending on simulation progress

NS node 1
Castadiva node 1

NS node 2
Castadiva node 2

NS node 3
Castadiva node 3

NS node 4
Castadiva node 4

NS node 5
Castadiva node 5

Figure 6.14.: One node’s X position in a random simulation

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

N
od

e'
s

Y
 c

oo
rd

in
at

es

Simulation progress (Seconds)

One node's Y position in a random simulation, depending on simulation progress

NS node 1
Castadiva node 1

NS node 2
Castadiva node 2

NS node 3
Castadiva node 3

NS node 4
Castadiva node 4

NS node 5
Castadiva node 5

Figure 6.15.: One node’s Y position in a random simulation

43

6.2.5. Minor issues in Castadiva

This section contains a list of issues I encountered in Castadiva. Those issues are minor
issues that are not directly related with the parts of the program I worked on. I fixed
some of those issues (6.2.5.1) but had no time to fix all of them (6.2.5.2).

6.2.5.1. Fixed issues

1. When the Execution Planner, the Routing protocol designer, the Simulation or the
Mobility plugin designer windows where closed using the upper right cross, the whole
program was exited with no warning.

2. The path to the NFS folder was not loaded when a scenario was loaded. As a result,
if a non default path was used, it had to be reconfigured manually after each load.

3. The Net device value in the Computer configuration window was not updated after
a new scenario was loaded.

4. The Stop simulation button was no longer compatible with mobility. I thus replaced
it with a Reset Access-Points which should send a reboot command to all the Access-
Points.

5. The buttons Import Citymob and Import NS-2 in the execution planner had no
associated code. They were removed.

6.2.5.2. Unfixed issues

1. The Net device value in the Computer configuration window not seem to be used in
the program.

2. The export NS-2 function exports TCP traffic as UDP. TCP is not implemented in
the code.

6.3. Important mobility issues in Castadiva

While trying to compare Castadiva’s results with ns-2 ’s results for data transfers with
mobility, none of my comparisons were conclusive. During my last days investigating
the possible origin of the problem, I found an error with mobility in Castadiva (6.3.1).
I also found an issue with ARP that can be problematic in certain situations (6.3.2).
Unfortunately, I had no sufficient time to fix those problems and this should probably
be done as soon as possible as the problem also probably affects the current release of
Castadiva.

6.3.1. Bad throughput calculation

Originally, Castadiva was designed for static scenarios. And so were Castadiva’s client
and server programs that are used on the Access-Points to generate TCP or UDP traffic
flows. See Protocol Binaries in figure 4.2 and section 6.1.3 for more information about
those programs.

We are now going to detail how those programs calculate throughput, especially how
they calculate the time for the throughput calculation. Please note that the following
explanations might be difficult to understand. They are written for someone who already

44

knows about Castadiva’s implementation. The two points at the end of this section shows
the consequences of such an implementation with mobility.

With TCP, the server program is started from the very beginning of the simulation. The
parameters for the server programs are

use /castadiva/nfs/bin/TcpFlowServerMIPS <Port > <secs > <times >

secs represents the time that the server should wait for connections before it exits.
For example, for a simulation of 120 seconds, if we have a transfer from second 10
to 60 then secs == 120.
The client program is started exactly when the data transfer should start. It will try
to connect to the server and then transmit for the determined time. In our example
it is started at second 10 and will transfers for 60-10=50 seconds. When the server
receives the first connection from the client, it will record the transfer start time and
continue receiving as long as he has not received for secs seconds. To calculate
throughput, the server will use the time between the first and the last
received packets.

With UDP, the server program is also started from the very beginning of the simulation.
The parameters for the server program are

use /castadiva/nfs/bin/UdpFlowServerMIPS <Port > <waiting secs > <

receiving seconds > <times >

Where waiting secs indicates how long the server should wait for connections and
receiving seconds shows how long the reception should last. The client programs
starts simultaneously with the transfer.
The client program transfers for the desired time and then exits. As it is UDP, it
wont try to get any confirmation from the server. When the server receives its first
packet, it starts counting for receiving seconds before it shuts down.

Now, there is a problem when both those server programs are used with mobility. As it is
possible that two nodes get in range and out of range at any time, two problems can arise.

1. If nodes are out of range when the transfer starts. In a static simulation, they remain
out of range for the whole simulation. With a mobile simulation, they might get in
range later in the simulation. If they do so, Servers do only start counting transfer
time from the moment the first packet is received. For example, if a simulation lasts
120 seconds and if there is a transfer among two nodes from second 10 to second
110. If the nodes are out of range until second 109, they will start transferring for
100 seconds at second 109 and exceed the simulation time of (109+100)-110 = 99
seconds.
With UDP, as the client do not know about the reception of its packets, it wont
transfer more than 100 seconds. During the 99 seconds out of the simulation time,
nothing will be transmitted. Results should thus be correct, but this generates a
useless waiting time.
With TCP, the client will need to connect to the server before it can transfer its data,
and it will start counting down its transfer time when it gets its first connection with
the server. As a result, during the 99 seconds out of the simulation, TCP will continue
transferring data. It is not to mention that visibility is reset after the simulation
time. This causes wrong results.

45

0

10

20

30

40

50

0 2 4 6 8 10 12

T
hr

ou
gh

pu
t K

B
/s

Simulation progress (Seconds)

Low CBR UDP Throughput comparision for a determined scenario

Throughput with Castadiva Throughput with ns-2

Figure 6.16.: Low CBR UDP throughput for a mobile scenario in Castadiva ans ns-2

2. With TCP, If a transfer is planned for 100 seconds and if the nodes get in range for
only 2 seconds at second 98, the throughput will be calculated over 2 seconds (This
is not taking in account problem 1). If another transfer is planned for the same 100
second and if the nodes get in range for the two first seconds, the throughput will be
calculated over 100 second. As a result, two nodes that transfer the same amount
of data over the same time get very different results. The nodes that first enter in
contact are disadvantaged for TCP throughput calculation.

I will now present my last validation results that lead me to the present conclusions. In
figure6.16 we have a comparison of a low CBR (Constant Bit Rate) scenario in Castadiva
and ns-2. It is the same scenario imported from CityMob and commented in figures 6.14
and 6.15 on page 43 in the CityMob Import validation (see section6.2.4.4). In that scenario,
the following transfers were configured: 1-2, 1-3, 1-4, 1-5, 2-3, 2-4, 2-5, 3-4, 3-5, 4-5 from
second 10 to 110. In figure 6.16, they are numbered from 1 to 10 in the same order.

The first observation that we can make is that visibility is correct. When ns-2 can
transfer, Castadiva can also transfer. Figure 6.17 shows the distance between the different
nodes, still for the same simulation. For readability, only nodes that get in range a least
once in the simulation are shown. This confirms correct mobility management in Castadiva
retarding visibility as the higher throughput are associated with the nodes that spend more
time in range.

6.3.2. Bad ARP emulation with TCP

Castadiva’s visibility rules do not block ARP REQUEST s. Therefore, two theoretically
out-of-range nodes do constantly know their respective MAC addresses even-tough they
can not communicate at layer 3. In ns-2 if there is no special routing protocol enabled

46

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

D
is

ta
nc

es
 (

m
)

Simulation progress (Seconds)

Distance between nodes for a mobile simulation

Maximum range for a node
Distance between nodes 2-4
Distance between nodes 3-4

Distance between nodes 3-5
Distance between nodes 4-5

Figure 6.17.: Distance between nodes for a mobile scenario.

and if a node receives the command to transfer some data to another out-of-range node,
it will make an ARP REQUEST and wont get any response. After a short time, it will
make another ARP REQUEST. As long as the ARP REQUEST gets no response, the
waiting time increases. If two nodes get in range later in the simulation and if the client
is still waiting for a reply to his ARP REQUEST, transfer wont start before the next
ARP REQUEST. On the contrary, in Castadiva, it starts immediately. The difference of
time can lead to a difference of up to 128 seconds14.

Important note: With UDP, ns-2 keeps sending ARP requests as long as it gets no an-
swer.

6.4. Maximal UDP bit rate issue

As explained in section 7.2.3 on page 51, one of my first concerns to compare Castadiva
with ns-2 was to setup ns-2 so that it behaves similarly to my 802.11g network. Therefore,
I made a speed comparison between Castadiva ans ns-2 with UDP Constant Bit Rate
traffic. Results can be found in figure 6.18 on the next page.

When I presented my first results to the group, some commented the very low transfer
rate of Castadiva. Later on, Alvaro and I investigated the possible reasons of such a speed
difference. We finally found out that there probably was an error with the OpenWRT
router’s drivers and UDP. Let us now describe the different tests that led us to such a
conclusion.

1. Our first reaction to that low throughput was interference, probably due to the

14The delay is depending on the ARP PERSISTENCE parameter. The default delay is 31 seconds. See
http://www.rabbit.com/documentation/docs/manuals/tcpip/usersmanualv1/arp_dns.html.

47

http://www.rabbit.com/documentation/docs/manuals/tcpip/usersmanualv1/arp_dns.html

0

1000

2000

3000

4000

5000

6000

7000

8000

0 500 1000 1500 2000 2500

T
hr

ou
gh

pu
t (

K
bi

ts
/s

ec
o

nd
)

Packet rate (packets/second)
One packet = 512 KBytes

802.11g throughput depending on packet rate in Castadiva and NS
Distance between nodes is 5cm, transport protocol is UDP

Castadiva simulation 1
Castadiva simulation 2
Castadiva simulation 3

NS Simulation

Figure 6.18.: UDP CBR Throughput comparison between ns-2 and Castadiva

election of a bad channel. But TCP transfers do reach much higher speeds, we
reached up to 8Mbps with TCP instead-of UDP.

2. In Alvaro’s configuration, with EEEPCs instead of routers, everything is fine.

3. We then tried to connect the routers with Ethernet and ran the same UDP simula-
tion. We reached around 25Mbps, which is acceptable.

4. In order to know if the problem came from the UDP client software, we used an
EEEPC as a client to generate the packets. This was suggested by Carlos. Those
packets where then re-routed over a wireless link. We got only 2Mbps throughput.
We did the same with an EEEPC as a server connected to the second router. Again,
we got only 2Mbps with UDP.

Figure 6.19.: Test architecture for UDP routing on wireless routers

5. We found out that the processor of client routers do rapidly saturate with UDP
transfers. Optimizing the client source code and optimizing the compilation, we got

48

a slightly better throughput with UDP. But still much lower than TCP ’s throughput
and processor saturation.

As a conclusion, it seems that LinkSys WRT54GL routers have problems handling wireless
UDP packets. At least with OpenWRT.

6.5. Writing a research Article

It was an unsuspected task. On April the 20th, I was asked to participate in a research
article, in collaboration with Alvaro Torres. The article comments the new functionali-
ties in Castadiva and it is supposed to be presented during the CEDI 2010 congress in
September15. A copy of the final article can be found in appendix B.

As it was a relatively urgent task, I partly suspended my previous work to dedicate
about one week to the writing of the article16. In fact, writing was probably just a minor
task, even-though we had to write in English. What really gathered my efforts was to get
a clear idea of Castadiva, my work and what I was going to write about. I think it was
an interesting approach that forced me to reenforce the basements of my knowledge about
Castadiva.

I finally wrote the following sections of the article:

3 Castadiva which is a presentation of the test-bet.

4.3 Plugin system comments the routing and mobility plugin systems.

When we got a first version of what the article could be, we submitted our draft to Carlos
T. Calafate, Juan-Carlos Cano and Pietro Manzoni. Their revision was very helpful, they
corrected many grammatical errors but they also pointed out some semantic errors. For
example, we should not name “Castadiva” before we describe it. This might of course seem
obvious but it is not that simple to correctly explain something you have been working
on for months. It thus was an interesting exercise and I tried to remember of it for this
report. I also remembered LYX 17, a LATEXedition tool that I discovered for the occasion
and that I appreciated a lot.

15Our article is part of the section XXI Jornadas de Paralelismo. See the following URL for further details:
http://cedi2005.ugr.es/2010/contenido.php?apartado=actividades&sub=simposios.

16See figure 3.1 on page 13 for time management details
17See www.lyx.org

49

http://cedi2005.ugr.es/2010/contenido.php?apartado=actividades&sub=simposios
www.lyx.org

7. Useful software

7.1. Netbeans

Netbeans is an IDE (Integrated Development Environment) which supports JAVA, the
language Castadiva’s Core1 is written with. It is a very efficient tool which really empowers
the programming process. It integrates advanced functionalities, the ones I used most are

• Code completion based on the imported classes.

• Search for all the usages of a function or variable in the project.

• Search for the declaration of a function or variable in the project.

• Support of Subversion, a version management system to enable effective collaborative
work.

• Live error correction.

• WYSIWYG2 graphical user interface editor.

• Automated variable and function renaming.

For example, when a I had to investigate a new functionality, I systematically searched the
corresponding code using the Find usages or Go to source options. When the code was
written in Spanish, I could simply rename variables and functions in the whole project.
Having a list of available functions for a variable is very handful to handle very large
classes.

The subversion system that was set up for Castadiva was also very well integrated in
Netbeans. It was easy to compare versions of the programs, keep track of all the changes
and release new versions of the software.

7.2. Network Simulator 2 (NS-2)

7.2.1. Introduction

The Network Simulator - ns-2 is developed by various researchers and institutions. It is
frequently used in network research and was appropriate, in our situation, to compare Cas-
tadiva’s results to other results. In this section, we wont describe all of ns-2 ’s possibilities
but review use-full tips for ns-2 with Castadiva, MANET’s and routing in general.

1See section 4.2 to learn more about the Core in Castadiva.
2What You See Is What You Get

50

7.2.2. Learning about ns-2

There are many tutorials dealing with any aspect of ns-2 spread all over the Internet.
For example, I recommend Marc Greis’s tutorial3 which offers an introduction to ns-2’s
basics and also teaches the basics of wireless simulation with ns-2. In general, I would
recommend to focus on this4 page to encounter information about ns-2. As there are
several versions of ns-2, I rarely succeeded in finding appropriate information using any
search engine. I thus recommend to use as much as possible the NS Manual5 in order to
find precise and probably version-related information.

7.2.3. Simulating 802.11g with ns-2

In order to validate results that were generated using 802.11g routers, a first step is to
configure ns-2 with the correct parameters to simulate 802.11g. Surprisingly, I did not find
any set of parameters to achieve this on the Internet. I finally investigated two different
options to solve this problem.

1. Johann M. Márquez Barja6, also working in the network laboratory, implemented
802.11g for his own work. See appendix C for more detail. I used his implementation
as a basis of my own configuration file that does not support distance losses, and
thus closer to Castadiva. See appendix E on page 77 for the complete configuration
file.

2. Later on a new version of ns-2 (ns-2.34) was released. One of the important im-
provements in that version is the support of packet loss due to interferences on
wireless links. Another improvement is the native support of 802.11g. Fortunately,
one of the example scripts (adhoc tcp.tcl) that can be found in the ns-allinone-
2.34/dei80211mr-1.1.4/samples folder precisely simulates an Ad-Hoc 802.11g net-
work. That script inspired my final ns-2 settings. Those settings can be found in
appendix F on page 80.

7.2.4. Setting ranges with ns-2

In Castadiva, ranges can be configured through the user interface (See appendix A on
page 59). If the distance among two nodes is lower or equal to their range, they can
communicate without any distance-related loss. If the distance is greater, then Access-
Points can not communicate at all.

In order to set the range of a signal in ns-2, the threshold.cc7 file, located at ˜ns/indep-
utils/propagation/threshold.cc can be compiled and used as follows:

./ threshold -m TwoRayGround -fr 2400000000 -ht 1 -hr 1 300

distance = 300 propagation model: TwoRayGround

Selected parameters:

transmit power: 1.58489

frequency: 2.4e+09

transmit antenna gain: 1

receive antenna gain: 1

system loss: 1

transmit antenna height: 1

3See: http://www.isi.edu/nsnam/ns/tutorial/index.html
4See: http://www.isi.edu/nsnam/ns/
5See: http://www.isi.edu/nsnam/ns/ns-documentation.html
6See: http://www.marquez-barja.com/
7See: http://www.isi.edu/nsnam/ns/doc/node223.html

51

http://www.isi.edu/nsnam/ns/tutorial/index.html
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/ns-documentation.html
http://www.marquez-barja.com/
http://www.isi.edu/nsnam/ns/doc/node223.html

receive antenna height: 1

Receiving threshold RXThresh_ is: 1.95665e-10

I made a few experiments with nodes separated with 300, 299.9 or 301 to confirm that
result.

7.2.5. Analyzing ns-2 results

I first used a method from Evan Jones’s blog8 to collect UDP simulation results. It consists
in recursively running a function with a fixed interval of time and to write temporary results
to a text file. This was quite efficient for UDP and other data like distances between nodes
or node’s position but I could not translate the technique to TCP. Carlos Miguel Calafate
is the one who taught me an interesting method based on ns-2 ’s default output files and
simple Script Shell scripts. For example, the following command:

cat simple.tr | grep ^r | grep "Md 4" | grep "Ms 2" | grep cbr | wc -l

Will return the number of UDP CBR packets that were transmitted from node 2 to node
4. There are, of course, many other possibilities9 and this method allows a deeper analysis
and better understanding.

7.2.6. Castadiva and ns-2

Castadiva offers two ns-2 related functions:

• import NS-2 was probably meant to offer an Export to Castadiva functionality in
other network related software. As an input, it takes a very precisely formatted file.
Any space should be respected and a special header is also requested.

#

nodes: 5, pause: 0.0, max speed: 0.0, max x = 1500.0 , max y: 1500.0

#

• export NS-2 function is supposed to allow traffic ans scenario export for ns-2. For
now, TCP traffic is exported as UDP. See Unfixed issue 2 on page 44.

Nevertheless, the export function is very interesting when the simulation has many nodes
with complicated movements.

7.3. Gnuplot

Gnuplot10 is a powerful tool that allows to generate any kind of graphical charts. For
my validation work, I often had to compare the results of a Castadiva simulation with
the results of a ns-2 simulation. Some of those charts can be viewed in this report, for
example Figures 6.12 and 6.14. Those figures were exported directly in vector graphical
format (SVG), which offers many advantages as an excellent image quality, a light weight
and infinite scalability.

As for ns-2, Gnuplot changes a lot along versions and it is not always easy to find the
adequate information. But the Gnuplot user manual11 has an index which makes it quite

8See: http: // evanjones. ca/ basic-80211-stats. html
9The following legend of ns-2 output format might be helpful: http://nsnam.isi.edu/nsnam/index.

php/NS-2_Trace_Formats
10See www. gnuplot. info
11See http://www.gnuplot.info/documentation.html

52

http://evanjones.ca/basic-80211-stats.html
http://nsnam.isi.edu/nsnam/index.php/NS-2_Trace_Formats
http://nsnam.isi.edu/nsnam/index.php/NS-2_Trace_Formats
www.gnuplot.info
http://www.gnuplot.info/documentation.html

easy to use. As an example of how to generate a chart with Gnuplot, you can refer to
appendix G on page 83 which is the source file of figure 6.14.

7.4. LATEX

I discovered LATEX during this internship. I first used it to write the Routing Plugin
System’s user manual. LATEX has the advantage of producing high quality documents as
it respects many typographical rules which are also effective for professional edition.

Later on, I discovered LYX , a Graphical User Interface for LATEX which makes LATEX writ-
ing much more productive, even-tough it probably also introduces some limits.

I used LATEX with LYX for this report and got fully satisfied. LYX handles many graph-
ical file formats which allows to insert vectorized drawings directly into a pdf document. It
offers to generate fully operational pdf documents with hyperlink and index management.
Finally, LATEX also handles appendices with great effectiveness.

53

8. Conclusion

I did not achieve all of the tasks I was given for this internship. At least, it did not succeed
in positively validating all of Castadiva’s new options. When we defined my work, we did
not know exactly how hard it would be. It finally came up to be much more difficult than
expected: the functionalities that I had to validate were in a beta stage. On one hand,
the code was chaotic, sometimes Spanish written, not commented and contained errors,
omissions. On the other hand, the previous designs were incomplete as they did not take
in account all parts of the program. For sure, It is not an easy task to enable mobility in
Castadiva, which was initially designed without mobility. The complexity makes it quite
difficult and long to assimilate a new functionality. It is also hard to find the origin of
an error which can be as vague as wrong results. Nevertheless, regarding the task I did
not entirely validate, I believe I made an important progress and I probably identified
the source of most of the remaining errors. I hope someone will continue my work and
therefore, I wrote this report with as much detail I could.

My experience as an trainee in the GRC group and in the UPV in general is defini-
tively positive. Even-though I had some hard times desperately looking for an error, I
enjoyed most of the hours I spent in the laboratory. The people I met there are nice,
friendly and ready to help. This is probably also an important aspect when it comes to
one’s professional life. Regarding knowledge and competences, I probably augmented my
analysis abilities as well as the ability to progressively handle a large problem. Of course, I
dealt a lot with JAVA, Linux and ns-2 but I also increased my general computer network
knowledge as well as... my command of the Spanish language.

54

9. Thanks

There are a few persons I would like to thank for their help with this internship project.

Pietro Manzoni (Coordinator of the GRC) For being my internship director and for of-
fering me a job in the Computer Network Lab at the UPV.

André Aoun (Director of STRI) For his voluntary support all along my project, from it’s
very beginning to it’s last days.

Marta Caballero (Exchange Coordinator at the UPV) For her patience an her support
with administrative tasks.

Carlos Miguel Calafate (Professor at the UPV) for his pertinent technical advice.

Alvaro Torres & Jorge Hortelano (Master and PhD students in the GRC)for their pa-
tience an their answers to many of my questions about Castadiva.

55

Index

A
Alvaro, 9

C
Canvas, 18
Castadiva, 15
CBR, 46
CEDI 2010, 49
CityMob, 39
Core, 16
Cross-compiling, 25

E
ERASMUS, 8

G
Gnuplot, 52
GRC, 9

I
IDE, 50

J
jar, 21
JAVA, 17
javac, 21
Jorge, 9

L
LATEX, 53
LinkSys WRT54GL, 17
LYX, 53

M
MANET, 15
Marta Caballero, 10
Mobility Plugin, 35

N
Netbeans, 50
Network Simulator 2, ns-2, 50
NFS, 17, 21
Node, 16

O
Objectives, 12, 20
OLSR, 29
OpenWRT, 17, 22
OPTIMUM, 28

P
Pietro Manzoni, 10

R
Routing Plugins, 28

S
SSH, 17
SSH Public Key, 24
STRI, 3

T
TFTP, 23

U
UPV, 9

V
VANET, 39

56

Bibliography

[1] Jorge Hortelano, Juan-Carlos Cano, Carlos T. Calafate, and Pietro Manzoni. Testing
applications in manet environments through emulation. EURASIP Journal on Wire-
less Communications and Networking, vol. 2009, Article ID 406979, 20 pages, 2009.
doi:10.1155/2009/406979.

[2] Wannes Vossen, Alvaro Torres, Jorge Hortelano, Carlos T. Calafate, Juan-Carlos Cano,
and Pietro Manzoni. Extending an emulation platform for automatized and distributed
evaluation of qos in manets. April 2010.

57

Part III.

Appendices

58

A. Castadiva’s GUI splash view

59

6
0

B. Extending an emulation platform for
automatized and distributed evaluation
of QoS in MANETs [2]

61

Extending an emulation platform for automatized and distributed
evaluation of QoS in MANETs

Wannes Vossen, Alvaro Torres, Jorge Hortelano,
Carlos T. Calafate, Juan-Carlos Cano and Pietro Manzoni

Department of Computer Engineering

Universidad Politécnica de Valencia

Camino de Vera, S/N, 46022 Valencia, Spain

wanvos@posgrado.upv.es, atcortes@batousay.com, jorgehortelano@gmail.com

{calafate,jucano,pmanzoni}@disca.upv.es

Abstract

Nowadays Mobile Ad Hoc Network (MANET)
testing is being done using simulation models,
like ns-2, but such simulations tend to be too
optimistic. In this work we extend Castadiva,
a test-bed architecture that allows validating
software solutions (both applications and net-
work protocols) for real ad-hoc environments
using low-cost, off-the-shelf devices and open
source software. Our extensions are twofold:
in the one hand we improve the platform to
enhance support for real-time traffic. On the
other hand we make distributed tests possible
and fully automatic.

1 Introduction

Mobile ad-hoc networks (MANETs) are packet
radio networks composed by independent and
heterogeneous stations that cooperate in rout-
ing and packet forwarding tasks, conforming a
dynamic multi-hop network.

All the nodes which are part of a MANET
can act as end-points for data interchange or
as routers when end-points are not in direct
contact. The topology of the network changes
dynamically as mobile nodes join or depart the
network, or when radio links between nodes
become unusable, and so networks can be de-
ployed easily and cheaply by using efficient
routing protocols to operate correctly. The

importance of MANETs becomes more evi-
dent by noticing the wide application area that
MANET scenarios embrace. Special situations
require communication networks to be avail-
able without any previous infrastructure, like
emergency missions, military operations or ad-
hoc meetings.

Testing and evaluating protocols for
MANETs is a mandatory request to guar-
antee its success in a real world application.
Researchers in this field have three options
for testing their MANET protocols: using
simulation tools, using emulators, or using
test-beds.

Emulators provide an attractive middle
ground between pure simulators and wireless
test-beds, allowing scalable and repeatable ex-
perimentation using real devices. In section 2
we review the different emulators available.

Castadiva [8] is one of those emulators, it
is also the platform that we are extending in
this paper. Further details can be found in
section 3.

Also, the proliferation of devices with multi-
media and wireless networking capabilities in-
crease the demand of audiovisual communica-
tions among MANET nodes, requiring certain
levels of QoS. To meet this need, the IEEE
802.11e [7] working group has enhanced the
IEEE 802.11 [6] MAC to provide QoS at the
MAC layer. So, in order to meet these new re-
quirements we have updated Castadiva to be

1

62

QoS capable.
The rest of this work is organized as fol-

lows: a few related works are presented in sec-
tion 2. Section 3 briefly describes the original
Castadiva architecture and features. In sec-
tion 4 we present the different extensions made
to Castadiva to offer QoS support. Finally, in
section 5 we present some concluding remarks.

2 Related work

The idea of creating an emulator for MANET
environments is not new and, in fact, several
platforms for generating real ad hoc network
experiments have been proposed and can be
found in the literature.

We will only focus on those platforms that,
similarly to Castadiva operate with real code,
since our main purpose is to test and validate
real code.

ORBIT is an indoor radio grid emulator for
controlled experimentation and an out-
door field trial network for end-user evalu-
ations in real-world settings [4]. This em-
ulator needs an expensive noise generator
since it emulates high node distances by
reducing the signal-to-noise ratio. It also
requires investing a high budget to cre-
ate the grid of nodes (each computer is a
possible position of the node in a simula-
tion), as well as extra support servers for
data storage. Thus, deploying the entire
infrastructure requires a lot of room.

Carnegie Mellon U. Wireless Emulator
supports real devices, applications, MAC
and PHY layers on a network-wide scale,
while maintaining experimental control
and repeatability [5]. The disadvantages
of this emulator are that it does not use
commercial off-the-shelf devices, using an
FPGA for digital emulation instead.

MobiEmu an emulator to test an ad hoc net-
work of any scale and with any mobility
scenario without actually moving the ad-
hoc nodes physically [10]. We discarded
this emulator for our test since it relies
on expensive clusters to emulate the sce-
nario.

Taking the limitations of these platforms into
consideration, Castadiva relies instead into a
cheap architecture based on low-cost devices
to generate a test-bed.

Castadiva outperforms the other emulators
in terms of: (a) the variety of devices that
can be used as nodes, (b) the initial budget
needed to deploy the emulator and (c) the ease
of use provided by it’s GUI; this means that
it makes a clear contribution to the research
community.

To our knowledge none of the emulators
mentioned above support QoS traffic.

3 Castadiva

Castadiva is a MANET test-bed platform wich
provides a cost-effective alternative to simu-
lation tools. This can be achieved by allow-
ing certain critical components of a simulation
to be real. For example, Castadiva relies on
actual wireless communications, using IEEE
802.11 interfaces.

Figure 1: Castadiva architecture

Castadiva’s architecture is shown in Fig-
ure 1. It is based on two major elements:
(a) The core, which orchestrates the simula-
tion and coordinates the Nodes; (b) The nodes
which are able to communicate among them-
selves, for simulation purposes, using their
IEEE 802.11 wireless interface. Communica-
tion among the core and the Nodes is per-
formed over a typical Ethernet network. Eth-

63

Figure 2: Software components for Castadiva

ernet allows reduced delays and guarantees no
interferences with wireless signals.

As shown in figure 2, the Castadiva core is
written with JAVA and can be run on a sim-
ple computer. The nodes, on their part, must
rely on a Linux operating system. For exam-
ple, Castadiva’s development team used Wi-
Fi routers1 or even Netbooks 2. Netbooks of-
fer better hardware performances than routers
and can be easily moved around.

Figure 2 offers a detailed overview over the
protocols used in Castadiva. It represents the
situation where the Core would be a Linux
PC and the nodes are wireless routers using
a Linux based operating system (OpenWRT).
Since the Node devices may be very specialized
(routers, PDAs, ...) and have limited storage
resources, we use NFS to store and access any
simulation content on the nodes. The NFS
server must be located on the Core, allowing
easy file sharing among the Castadiva software
and every node. Finally, Secured Shell (SSH)
is a good option to control the simultaneous
beginning of a simulation on every nodes.

Figure 3 shows the graphical interface that
was designed to easily control the previously
described system. As we can see, it is possible
to place each node on the canvas and to de-
fine its range. According to those ranges, Cas-
tadiva makes sure that two out-of-range nodes

1Linksys WRT54GL with the OpenWRT Linux
based Operating system.

2Asus eee PC 901

do not communicate, even if their real inter-
faces are able to do so. The graphical user in-
terface also allows picking a routing protocol
and mobility instructions. Those possibilities
will be further described in this paper.

Finally, figure 4 is a capture of the traffic
window. Traffic among nodes can be config-
ured with a few options related to UDP or
TCP, such as the UDP rate or the TCP file
size to transfer.

4 Proposed improvements

In this section we explain all the new features
added to Castadiva. These features include
both QoS integration and automatization of
testing parameters.

This section is divided in four parts, the first
two parts describe how we added QoS support
to Castadiva, and the other two describe the
automatization and scheduling of a batch of
tests. In particular, the first part explains how
we included support for IEEE 802.11e; the sec-
ond part explains how we managed to measure
delay in UDP packets. Part three describes
the new plugins system that allows switching
between routing protocols and mobility mod-
els. Finally, in the fourth part, we describe
the new execution planner and it’s statistics
collection system.

4.1 IEEE 802.11e support

IEEE 802.11e is an extension to the IEEE
802.11 standard which was released in 2005
to add QoS support. QoS is achieved by re-
placing the DCF function by EDCA (enhanced
distributed channel access). With this new
function (fully compatible with DCF) QoS is
achieved through the introduction of different
access categories (ACs), and their associated
backoff entities.

Contrarily to the legacy IEEE 802.11 sta-
tions, where all packets have the same prior-
ity and are assigned to a single backoff entity,
IEEE 802.11e stations have four backoff enti-
ties (one per AC) so that packets are sorted ac-
cording to their priority. The different access
categories available in IEEE 802.11e stations

64

Figure 3: Simulation window

are: Voice (AC_VO), Video (AC_VI), Best-
effort (AC_BE) and Background (AC_BK).

For applications to take advantage of the
IEEE 802.11e technology, datagrams should
have their IP Type of Service (TOS) header
field set according to the desired user priority.
When delivered to an IEEE 802.11e enabled
wireless card driver, those datagrams will be
handled according to the priority defined.

In Castadiva we have implemented the
packet priority support by adding TOS infor-
mation to UDP packets in our generator. Fig-
ure 5 shows how the user can select one of the
four categories for each UDP flow.

If the subjacent network is not IEEE
802.11e enabled, setting the TOS won’t make
any difference; however if the network is IEEE
802.11e enabled, traffic differentiation should
be effective.

Figure 5: IEEE 802.11e category selection and De-
lay measurement.

65

Figure 4: Traffic window

4.2 Delay measurement for UDP traffic

Measuring the delay of UDP packets is a prob-
lem which is not easy to solve in a real environ-
ment. Notice that in a simulation environment
this is very easy to do, as we can determine
when an UDP packet leaves the source and
when it arrives to the destination; However, in
a real environment, we have to deal with clock
desynchronization, which significantly compli-
cates the process.

To cope with this problem we implemented
two different methods, one more precise and
another just orientative. The basis of both
methods is our UDP flow generator. At the
source node we read the local time, and stamp
it on each sent packet. On the sink applica-
tion, again, we obtain the time, and then com-
pare it with the packet’s time-stamp.

The first method counters clock desynchro-
nization by relying on ntp [1] at the beginning
of each emulation. This method is just orienta-
tive since it is not able to solve the clock drift
problem during tests. Additionally, the low
margin of error required can not be achieved
with ntp.

The second method we adopted was the so-
lution proposed in [2]. It employs the control
network (Fast-Ethernet based) used by Cas-
tadiva to redirect UDP packets back to the
source; when using this method, both source
and sink programs are on the same machine.
This way we avoid clock desynchronization,
but we introduce a new delay. This delay
should be measured and taken into account
when results are processed.

In terms of implementation and integra-

tion with Castadiva we can select the second
method indepently for each flow by setting the
“Redirect” flag to true, as we can see in fig-
ure 5.

4.3 Plugins system

The first version of Castadiva was fully func-
tional, but only allowed using a single mobility
model and three routing protocols. With the
dynamic creation and loading of plugins we
have managed to support almost any routing
protocol and mobility model.

Routing protocols

Previous versions of Castadiva already sup-
ported a few common routing protocols. For
example OLSR [9] and AODV [3].

For those protocols to be functional, they
had to be previously installed and configured
on each node. What Castadiva did, when a
simulation started, was to activate the selected
protocol, sending a simple command line in-
struction via Secure Shell (SSH). When the
simulation ended, it was deactivated the same
way.

However, a few constraints come up when
that command line is hard-coded: what if it
changes with different nodes or different oper-
ating system versions?

Therefore, a plugin system was developed
and implemented in Castadiva. The idea is to
allow the user to define the needed informa-
tion to manage routing on the different nodes.
Moreover, it offers the advantage of possibly
designing a routing protocol plugin for any
routing protocol supported by the nodes.

66

Figure 6: Routing plugin configuration window in
Castadiva

Figure 6 shows how routing plugins can be
configured in the current version of Castadiva.
The command in text-field A is sent to each
access point when the simulation starts, fol-
lowed by eventual flags. All text entered in
text-area B is saved as a file that is copied on
the nodes at the path location stated in text-
field C. All existing files are overwritten and
the configuration file is removed after the sim-
ulation.

Finally, in order to find out how to stop the
routing protocol, Castadiva will automatically
find out the name of the binary file stated in A
and use a “killall binaryFileName” instruction
on each node.

Mobility

We also extended Castadiva’s to define custom
mobility models during a simulation. Through
the graphical interface shown in figure 7, a user
can take advantage of the JAVA programming
language to calculate the position of each node
at each second of the simulation. Given sim-
ulation information (Access Points list, mini-
mum speed, ...), the user can write any desired
code to meet the only requirement: fill in the
NodeCheckPoint[i][j] array where i represents

Figure 7: Mobility plugin configuration window

an access point and j a second in the simula-
tion. Note that every access-point must have
a defined position at any time of the simula-
tion. If the code is correct, the plugin will
be compiled and integrated directly into Cas-
tadiva, thus becoming available in the Simu-
lation window’s mobility plugin drop list (see
Figure 3).

4.4 Execution planner

The first version of Castadiva had had the fol-
lowing drawbakcs: tests should be performed
one-by-one, causing the creation of a huge set
of experiments to be very inefficient. With
this new feature we have managed to run up
to 200 tests in a row, allowing us to collect and
process lots of statistics.

The execution planner alone is very power-
ful, but if we combine it with the new plugin
system (Section 4.3) we can automatize the ex-
periment launching process, varying not only
the traffic sources/destinations, but also the
routing protocol or the mobility model. Thus,
we consider that it is a good platform for eval-
uating ns-2 results and performing compar-
isons.

As we can see in figure 8, the GUI of the ex-
ecution planner provides an easy way to cre-
ate and automatize the MANET evaluation.
It includes features like “Load list”, which im-
ports a list of scenarios previously saved with
the “Save list” option. The main component
of the window is a table that reflects the dif-

67

Figure 8: Execution planner GUI

ferent simulations that Castadiva will process
(column “Source folder”), and it also includes
the path where results will be saved (“Results
folder”), the numbers of runs per simulation
(“Runs” column) and, at the end, it includes
a message that informs the user about the
status of the simulation (Ready, Simulation
in progress, Canceled, Retrieving results, or
Done).

The results are stored in a directory named
“Iterations” inside the folder we mentioned in
the column “Results Folder”. Inside that di-
rectory every simulation creates a file named
“X_DefinedTraffic.txt” where Xε{1, Runs},
where each file contains the data of the table
that we can see in figures 5 and 4. An example
of this file can be seen in table 1.

5 Conclusions and future work

In this work we present some extensions to the
Castadiva platform to improve research in the
MANETs field by allowing to make real test-
bed experiments in a simple and straightfor-

ward manner.
With the proposed improvements we have

created a simple and powerful tool to automa-
tize the evaluation of MANETs in general and
QoS enabled MANETs in particular. Now, the
VoIP and Videoconferencing experiments can
be done taking into account QoS and delay pa-
rameters, which are usually available for sim-
ulation studies but only in a very few real ex-
periments.

With this new features, we plan to create a
real test-bed to analyze the behavior of vari-
ous routing protocols when their packets are
prioritized via IEEE 802.11e.

Castadiva is free software developed under
the GNU GPL license, and can be downloaded
at http://castadiva.sourceforge.net

Acknowledgments

This work was partially supported by theMin-
isterio de Educación y Ciencia, Spain, under
Grant TIN2008-06441-C02-01, by the Gener-
alitat Valenciana under Grant GV/2009/010.

68

Strt Stop Src Addr Traff Transf P/sec Thrgpt Received Delay AC Redir
10 130 6 3 TCP 10737 5823.931
10 130 6 3 UDP 512 125 505.941 99.64 121.64 VI true
10 130 6 3 UDP 256 10 20.277 100.0 87.209 VO true
10 130 3 6 UDP 512 125 504.497 99.52 84.506 VI true
10 130 3 6 UDP 256 10 20.156 99.4 53.654 VO true

Total UDP packets received: 99.64
Average throughput: 1374.9603

Table 1: Sample results obtained by the execution planner

References

[1] Network Time Protocol.
http://datatracker.ietf.org/wg/ntp/charter/.
Acessed: May 3, 2010.

[2] J.C Cano, J.M. Cano, C. Calafate,
E. Gonzalez, and P. Manzoni. Evaluation
of the trade-off between power consump-
tion and performance in bluetooth based
systems. Sensor Technologies and Ap-
plications, International Conference on,
0:313–318, 2007.

[3] Charles E. Perkins, Elizabeth M.
Belding-Royer, and Samir R. Das.
Ad hoc on-demand distance vector
(AODV) routing. Request for Com-
ments 3561, MANET Working Group,
http://www.ietf.org/rfc/rfc3561.txt,
July 2003. Work in progress.

[4] D. Raychaudhuri, I. Seskar, M. Ott, S.
Ganu, and K. Ramachandran. Overview
of the orbit radio grid testbed for eval-
uation of next-generation wireless net-
work protocols. Wireless Communica-
tions and Networking Conference, 2005
IEEE, 3:1664–1669, 2005.

[5] Glenn Judd and Peter Steenkiste. De-
sign and implementation of an rf front end
for physical layer wireless network emula-
tion. In IEEE 2007 IEEE 65th Vehicular
Technology Conference (VTC2007), April
2007.

[6] IEEE 802.11 WG. International Standard
for Information Technology - Telecom.

and Information exchange between sys-
tems - Local and Metropolitan Area Net-
works - Specific Requirements - Part 11:
Wireless Medium Access Control (MAC)
and Physical Layer (PHY) Specifica-
tions, ISO/IEC 8802-11:1999(E) IEEE
Std. 802.11, 1999.

[7] IEEE 802.11 WG. 802.11e IEEE
Standard for Information technology-
Telecommunications and information ex-
change between systems - Local and
metropolitan area networks - Specific
requirements Part 11: Wireless LAN
Medium Access Control (MAC) and
Physical Layer (PHY) specifications:
Amendment 8: Medium Access Control
(MAC) Quality of Service Enhancements,
2005.

[8] Jorge Hortelano, Juan-Carlos Cano,
Carlos T. Calafate, and Pietro Manzoni.
Testing applications in manet environ-
ments through emulation. EURASIP
Journal on Wireless Communica-
tions and Networking, vol. 2009,
Article ID 406979, 20 pages, 2009.
doi:10.1155/2009/406979.

[9] T. Clausen and P. Jacquet. Op-
timized link state routing protocol
(OLSR). Request for Comments
3626, MANET Working Group,
http://www.ietf.org/rfc/rfc3626.txt,
October 2003. Work in progress.

[10] Y. Zhang and W. Li. An inte-
grated environment for testing mo-
bile ad hoc networks. Available at:
http://www.wins.hrl.com/projects/adhoc.

69

C. Johann M. Márquez Barja’s
implementation for 802.11g in ns-2

70

1 # HTTP en VANETs
2
3 # Simulation script for NS2
4 # Johann Marquez (johann@marquez-barja.com)
5
6
7 puts "--> Top-Down Scripting!! \n"
8
9

10 # ==
11 # Define options
12 # ==
13
14 set val(chan) Channel/WirelessChannel ;# channel type
15 set val(prop) Propagation/TwoRayGround ;# radio-propagation model
16 set val(netif) Phy/WirelessPhy ;# network interface type
17 set val(mac) Mac/802_11 ;# MAC type
18 set val(ifq) Queue/DropTail/PriQueue ;# interface queue type; ((Queue/DropTail/

PriQueue ;#(for AODV))) ((CMUPriQueue ;#(for DSR)))
19 #set val(ifq) CMUPriQueue ;#(for DSR)
20 set val(ll) LL ;# link layer type
21 set val(ant) Antenna/OmniAntenna ;# antenna model
22 set val(x) 2000 ;# X dimension of the topography
23 set val(y) 2000 ;# Y dimension of the topography
24 set val(ifqlen) 50 ;# max packet in ifq
25 set val(seed) 0
26 set val(rp) AODV ;#one of OLSR, AODV, AODVUU, DSR, TORA, OLSR(v7)
27 set val(nn) 200 ;# how many nodes are simulated
28 set val(nn_traffic_sources) 50 ;#nodes que navegaran por web
29 set val(nn_servers) 1 ;#nodes servidores
30 #set val(cp) "traffic-trace-n50-c5... file" ;#patron de conexiones, en web no

utilizar
31 set val(sc) "./scenarios/m2-n200-t6000-s17-w2000-h2000-d80-a0-v1.scn";

#escenario de trafico CAMBIAR
32 set val(stopns) 20 ;# simulation time set val(trfile)

out.tr
33 set val(namfile) out.nam
34 #set val(httpfile) out.http
35 set val(random_mobility) FALSE
36 set val(random_number_generator) TRUE
37 set val(bw) 54e6
38 set val(completion) 0
39
40 set val(nn_pages) 300
41 set val(nn_session) 100
42 set val(interSession) 1
43 set val(interPageOption) 0
44 set val(pagesize) 10
45 set val(objsize) 10
46 # ==
47 # check for boundary parameters and random seed
48 if { $val(x) == 0 || $val(y) == 0 } {
49 puts "--> No X-Y boundary values given for wireless topology\n"
50 }
51 if {$val(random_number_generator) == TRUE} {
52 puts "--> Seeding Random number generator with $val(seed)\n"
53 ns-random $val(seed)
54 }
55
56 proc usage { argv0 } {
57 puts "Usage: $argv0"
58 puts "\tmandatory arguments:"
59 puts "\t\t\[-x MAXX\] \[-y MAXY\]"
60 puts "\toptional arguments:"
61 puts "\t\t\[-cp conn pattern\] \[-sc scenario\] \[-nn nodes\]"
62 puts "\t\t\[-seed seed\] \[-stop sec\] \[-tr tracefile\] \[-rp protocol\]\n"
63 }
64
65
66 proc getopt {argc argv} {
67 global val
68 lappend optlist nn nn_traffic_sources sc rp trfile httpfile stopns pagesize objsize ;#lista

de parametros de ejecucion de sim ns -parametro valor -otroparametro valor
69

71

70 for {set i 0} {$i < $argc} {incr i} {
71 set arg [lindex $argv $i]
72 if {[string range $arg 0 0] != "-"} continue
73
74 set name [string range $arg 1 end]
75 set val($name) [lindex $argv [expr $i+1]]
76 }
77 }
78
79
80
81 #
82 # If routing protocol is DSR, adjust queue type
83 #
84 if {$val(rp) == "DSR" && $val(ifq) == "Queue/DropTail/PriQueue"} {
85 set val(ifq) CMUPriQueue
86 }
87
88
89 # to set one session per traffic source
90 set val(nn_session) $val(nn_traffic_sources)
91
92
93 puts "\n\n\n"
94 puts "--> Configuration:"
95 puts "--> set val(chan) Channel/WirelessChannel ;# channel type"
96 puts "--> set val(prop) Propagation/TwoRayGround ;# radio-propagation model"
97 puts "--> set val(netif) Phy/WirelessPhy ;# network interface type"
98 puts "--> set val(mac) Mac/802_11 ;# MAC type"
99 puts "--> set val(ifq) Queue/DropTail/PriQueue ;# interface queue type;

((Queue/DropTail/PriQueue ;#(for AODV))) ((CMUPriQueue ;#(for DSR)))"
100 puts "--> #set val(ifq) CMUPriQueue ;#(for DSR)"
101 puts "--> set val(ll) LL ;# link layer type"
102 puts "--> set val(ant) Antenna/OmniAntenna ;# antenna model"
103 puts "--> set val(x) $val(x) ;# X dimension of the

topography"
104 puts "--> set val(y) $val(y) ;# Y dimension of the

topography"
105 puts "--> set val(ifqlen) 50 ;# max packet in ifq"
106 puts "--> set val(seed) 0 "
107 puts "--> set val(rp) $val(rp) ;#one of AODV, AODVUU, DSR,

TORA, OLSR(v7)"
108 puts "--> set val(nn) $val(nn) ;# how many nodes are

simulated "
109 puts "--> set val(nn_traffic_sources) $val(nn_traffic_sources) ;#nodes que

navegaran por web "
110 #puts "--> #set val(cp) $val(cp) ;#patron de conexiones, en web no utilizar"
111 puts "--> set val(sc) $val(sc); #escenario de trafico CAMBIAR "
112 puts "--> set val(stopns) $val(stopns) ;# simulation time "
113 puts "--> set val(trfile) $val(trfile) "
114 puts "--> set val(namfile) $val(namfile)"
115 #puts "--> set val(httpfile) $val(httpfile)"
116 puts "--> set val(random_mobility) $val(random_mobility) "
117 puts "--> set val(random_number_generator) $val(random_number_generator)"
118 puts "--> set val(bw) $val(bw)"
119 puts "--> set val(completion) $val(completion)"
120 puts "--> set val(nn_pages) $val(nn_pages)"
121 puts "--> set val(nn_session) $val(nn_session)"
122 puts "--> set val(interSession) $val(interSession)"
123 puts "--> set val(interPageOption) $val(interPageOption)"
124 puts "--> set val(pagesize) $val(pagesize)"
125 puts "--> set val(objsize) $val(objsize)"
126 puts "\n\n\n"
127
128
129 # ===
130 # Main Program
131 # ==
132
133
134 #
135 # Initialize Global Variables
136 #
137

72

138 LL set mindelay_ 50us
139 LL set delay_ 25us
140 LL set bandwidth_ 0 ;# not used
141 LL set off_prune_ 0 ;# not used
142 LL set off_CtrMcast_ 0 ;# not used
143
144 Agent/Null set sport_ 0
145 Agent/Null set dport_ 0
146
147 Agent/CBR set sport_ 0
148 Agent/CBR set dport_ 0
149
150 Agent/TCPSink set sport_ 0
151 Agent/TCPSink set dport_ 0
152
153 Agent/TCP set sport_ 0
154 Agent/TCP set dport_ 0
155 Agent/TCP set packetSize_ 1460
156
157 #give preference to routing protocols
158 Queue/DropTail/PriQueue set Prefer_Routing_Protocols 1
159
160 # unity gain, omni-directional antennas
161 # set up the antennas to be centered in the node and 1.5 meters above it
162 Antenna/OmniAntenna set X_ 0
163 Antenna/OmniAntenna set Y_ 0
164 Antenna/OmniAntenna set Z_ 1.5
165 Antenna/OmniAntenna set Gt_ 1.0
166 Antenna/OmniAntenna set Gr_ 1.0
167
168 # Initialize the SharedMedia interface with parameters to make
169 # it work like the 914MHz Lucent WaveLAN DSSS radio interface
170 Phy/WirelessPhy set CPThresh_ 10.0
171 Phy/WirelessPhy set CSThresh_ 1.559e-11
172 Phy/WirelessPhy set RXThresh_ 3.652e-10
173 Phy/WirelessPhy set Rb_ 11*1e6
174 Phy/WirelessPhy set Pt_ 0.2818
175 Phy/WirelessPhy set freq_ 914e+6
176 Phy/WirelessPhy set L_ 1.0
177 # Phy/WirelessPhy set bandwidth_ 11e6
178 Phy/WirelessPhy set bandwidth_ 54e6 ;# for 802.11a and 802.11g
179
180
181 # Initialize the 802.11 MAC
182 #Mac set bandwidth_ $val(bw)
183 #puts "Bandwidth set to $val(bw)"
184 #Mac/802_11 set dataRate_ $val(bw)
185
186
187 #Configuration for 802.11a and 802.11g
188
189 Mac/802_11 set CWMin_ 15
190 Mac/802_11 set CWMax_ 1023
191 Mac/802_11 set SlotTime_ 0.000009 ;# 20us
192 Mac/802_11 set SIFS_ 0.000016 ;# 10us
193 Mac/802_11 set PreambleLength_ 96 ;# 144 bit
194 Mac/802_11 set PLCPHeaderLength_ 40 ;# 48 bits
195 Mac/802_11 set PLCPDataRate_ 6.0e6 ;# 1Mbps
196 Mac/802_11 set RTSThreshold_ 3000 ;# bytes
197 Mac/802_11 set ShortRetryLimit_ 7 ;# retransmittions
198 Mac/802_11 set LongRetryLimit_ 4 ;# retransmissions
199 Mac/802_11 set basicRate_ 6e6
200 Mac/802_11 set dataRate_ 54e6

73

D. CityMob2 output file example

74

1 #
2 # MODEL 4: Enhanced Downtown Traffic Simulation Model
3 #
4 #
5 # SEED = 1273842116345
6 #
7 #
8 # nodes number= 5, max time= 120.0, max_speed= 100.0, max X= 1500.0, max Y= 1500.0
9 #

10 # d= 20.0, damaged= 1, alpha= 0.5, delta= 5.0
11 #
12 # min_speed_d= 25.0, max_speed_d= 50.0
13 #
14 #Node 0 (1140.0, 1390.6241869639089) --> (1140.0, 280.0) 58.88932070560723 Km/h
15 $node_(0) set X_ 1140.0
16 $node_(0) set Y_ 1390.6241869639089
17 $node_(0) set Z_ 0.0
18 #Node 1 (540.0, 111.77523584641058) --> (540.0, 1200.0) 75.06782928526441 Km/h
19 $node_(1) set X_ 540.0
20 $node_(1) set Y_ 111.77523584641058
21 $node_(1) set Z_ 0.0
22 #Node 2 (210.11858578806059, 560.0) --> (1240.0, 560.0) 59.38569098715311 Km/h
23 $node_(2) set X_ 210.11858578806059
24 $node_(2) set Y_ 560.0
25 $node_(2) set Z_ 0.0
26 #Node 3 (500.0, 145.20410617171447) --> (500.0, 380.0) 67.02568486533434 Km/h
27 $node_(3) set X_ 500.0
28 $node_(3) set Y_ 145.20410617171447
29 $node_(3) set Z_ 0.0
30 #Node 4 (800.0, 693.2904817726454) --> (800.0, 340.0) 59.76214259985875 Km/h
31 $node_(4) set X_ 800.0
32 $node_(4) set Y_ 693.2904817726454
33 $node_(4) set Z_ 0.0
34 #
35 #-- END OF INITIAL POSITION CONFIGURATION --
36 #
37 # Movements:
38 #
39 ##### NODE 0 MOVEMENTS #####
40 #Node 0 had an ACCIDENT:
41 $ns_ at 0.0 "$node_(0) setdest 1140.0 1390.6241869639089 0.0"
42 #END ACCIDENT
43 ##### NODE 1 MOVEMENTS #####
44 #Node 1: TARGET REACHED (540.0, 1200.0) (75.06782928526441 Km/h)
45 $ns_ at 52.18759071966314 "$node_(1) setdest 540.0 1200.0 75.06782928526441"
46 #Node 1: NEW TARGET (40.0, 1200.0)
47 #Node 1: TARGET REACHED (40.0, 1200.0) (52.77465990538741 Km/h)
48 $ns_ at 86.30727806161097 "$node_(1) setdest 40.0 1200.0 52.77465990538741"
49 #Node 1: RED SEMAPHORE UNTIL 104.4088489660594
50 #Node 1: GREEN SEMAPHORE
51 #Node 1: NEW TARGET (40.0, 520.0)
52 $ns_ at 104.45 "$node_(1) setdest 40.0 1200.0 0.0"
53 #Node 1: SPEED CHANGE (0.0 Km/h --> 63.40445188023556 Km/h)
54 $ns_ at 120.0 "$node_(1) setdest 40.0 926.1279925728561 63.40445188023556"
55 ##### NODE 2 MOVEMENTS #####
56 #Node 2: TARGET REACHED (1240.0, 560.0) (59.38569098715311 Km/h)
57 $ns_ at 62.432094828450175 "$node_(2) setdest 1240.0 560.0 59.38569098715311"
58 #Node 2: NEW TARGET (1240.0, 140.0)
59 #Node 2: TARGET REACHED (1240.0, 140.0) (58.1799813877065 Km/h)
60 $ns_ at 88.43832044864641 "$node_(2) setdest 1240.0 140.0 58.1799813877065"
61 #Node 2: NEW TARGET (60.0, 140.0)
62 $ns_ at 120.0 "$node_(2) setdest 718.4845036632628 140.0 59.5073149544258"
63 ##### NODE 3 MOVEMENTS #####
64 #Node 3: TARGET REACHED (500.0, 380.0) (67.02568486533434 Km/h)
65 $ns_ at 12.611064243209228 "$node_(3) setdest 500.0 380.0 67.02568486533434"
66 #Node 3: NEW TARGET (1400.0, 380.0)
67 #Node 3: TARGET REACHED (1400.0, 380.0) (84.05963188698215 Km/h)
68 $ns_ at 51.19406600728597 "$node_(3) setdest 1400.0 380.0 84.05963188698215"
69 #Node 3: RED SEMAPHORE UNTIL 66.41438630266265
70 #Node 3: GREEN SEMAPHORE
71 #Node 3: NEW TARGET (1400.0, 1440.0)
72 $ns_ at 66.45 "$node_(3) setdest 1400.0 380.0 0.0"
73 #Node 3: SPEED CHANGE (0.0 Km/h --> 77.55136935175538 Km/h)
74 #Node 3: TARGET REACHED (1400.0, 1440.0) (77.55136935175538 Km/h)

75

75 $ns_ at 115.65609438489076 "$node_(3) setdest 1400.0 1440.0 77.55136935175538"
76 #Node 3: RED SEMAPHORE UNTIL 129.19274902868204
77 $ns_ at 120.0 "$node_(3) setdest 1400.0 1440.0 0.0"
78 ##### NODE 4 MOVEMENTS #####
79 #Node 4: TARGET REACHED (800.0, 340.0) (59.76214259985875 Km/h)
80 $ns_ at 21.281796117941216 "$node_(4) setdest 800.0 340.0 59.76214259985875"
81 #Node 4: NEW TARGET (1440.0, 340.0)
82 #Node 4: TARGET REACHED (1440.0, 340.0) (92.42208279251665 Km/h)
83 $ns_ at 46.22910709632431 "$node_(4) setdest 1440.0 340.0 92.42208279251665"
84 #Node 4: RED SEMAPHORE UNTIL 55.864743625517406
85 #Node 4: GREEN SEMAPHORE
86 #Node 4: NEW TARGET (1440.0, 120.0)
87 $ns_ at 55.9 "$node_(4) setdest 1440.0 340.0 0.0"
88 #Node 4: SPEED CHANGE (0.0 Km/h --> 79.91145948724842 Km/h)
89 #Node 4: TARGET REACHED (1440.0, 120.0) (79.91145948724842 Km/h)
90 $ns_ at 65.8109690284956 "$node_(4) setdest 1440.0 120.0 79.91145948724842"
91 #Node 4: NEW TARGET (20.0, 120.0)
92 $ns_ at 120.0 "$node_(4) setdest 44.37136896264302 120.0 92.78417491661162"
93 #
94 #-- EXITING PROGRAM --#

76

E. Configuration for 802.11g in ns-2 without
distance losses

77

1 # ==
2 # Define options
3 # ==
4 set val(chan) Channel/WirelessChannel ;# channel type
5 set val(prop) Propagation/TwoRayGround ;# radio-propagation model
6 set val(ant) Antenna/OmniAntenna ;# Antenna type
7 set val(ll) LL ;# Link layer type
8 set val(ifq) Queue/DropTail/PriQueue ;# Interface queue type
9 set val(ifqlen) 50 ;# max packet in ifq

10 set val(netif) Phy/WirelessPhy ;# network interface type
11 set val(mac) Mac/802_11 ;# MAC type
12 set val(rp) DumbAgent ;# ad-hoc routing protocol
13 set val(nn) 5 ;# number of mobilenodes
14
15 # ==
16 # Simulation
17 # ==
18
19
20 # Create simulator
21 set ns_ [new Simulator]
22
23 # Set up trace file
24 $ns_ use-newtrace
25 set tracefd [open simple.tr w]
26 $ns_ trace-all $tracefd
27
28 # Setup Xgraph files
29 set f0 [open out0.tr w]
30 set f1 [open out1.tr w]
31 set f2 [open out2.tr w]
32 set f3 [open out3.tr w]
33 set f4 [open out4.tr w]
34 set f5 [open out5.tr w]
35 set f6 [open out6.tr w]
36 set f7 [open out7.tr w]
37 set f8 [open out8.tr w]
38 set f9 [open out9.tr w]
39
40 # Create the "general operations director"
41 # Used internally by MAC layer: must create!
42 create-god $val(nn)
43
44
45
46
47 LL set mindelay_ 50us
48 LL set delay_ 25us
49 LL set bandwidth_ 0 ;# not used
50 LL set off_prune_ 0 ;# not used
51 LL set off_CtrMcast_ 0 ;# not used
52
53 Agent/Null set sport_ 0
54 Agent/Null set dport_ 0
55
56 Agent/CBR set sport_ 0
57 Agent/CBR set dport_ 0
58
59 Agent/TCPSink set sport_ 0
60 Agent/TCPSink set dport_ 0
61
62 Agent/TCP set sport_ 0
63 Agent/TCP set dport_ 0
64 Agent/TCP set packetSize_ 1460
65
66 # unity gain, omni-directional antennas
67 # set up the antennas to be centered in the node and 1.5 meters above it
68 Antenna/OmniAntenna set X_ 0
69 Antenna/OmniAntenna set Y_ 0
70 Antenna/OmniAntenna set Z_ 1.5
71 Antenna/OmniAntenna set Gt_ 1.0
72 Antenna/OmniAntenna set Gr_ 1.0
73
74 # Initialize the SharedMedia interface with parameters to make

78

75 # it work like the 914MHz Lucent WaveLAN DSSS radio interface
76 Phy/WirelessPhy set CPThresh_ 10.0
77 Phy/WirelessPhy set CSThresh_ 1.559e-11
78 Phy/WirelessPhy set Rb_ 11*1e6
79 Phy/WirelessPhy set freq_ 914e+6
80 Phy/WirelessPhy set L_ 1.0
81 # Phy/WirelessPhy set bandwidth_ 11e6
82 Phy/WirelessPhy set bandwidth_ 54e6 ;# for 802.11a and 802.11g
83
84
85 # Initialize the 802.11 MAC
86
87 #Configuration for 802.11a and 802.11g
88
89 Mac/802_11 set CWMin_ 15
90 Mac/802_11 set CWMax_ 1023
91 Mac/802_11 set SlotTime_ 0.000009 ;# 20us
92 Mac/802_11 set SIFS_ 0.000016 ;# 10us
93 Mac/802_11 set PreambleLength_ 96 ;# 144 bit
94 Mac/802_11 set PLCPHeaderLength_ 40 ;# 48 bits
95 Mac/802_11 set PLCPDataRate_ 6.0e6 ;# 1Mbps
96 Mac/802_11 set RTSThreshold_ 3000 ;# bytes
97 Mac/802_11 set ShortRetryLimit_ 7 ;# retransmittions
98 Mac/802_11 set LongRetryLimit_ 4 ;# retransmissions
99 Mac/802_11 set basicRate_ 6e6

100 Mac/802_11 set dataRate_ 54e6
101
102
103 # The RX treshold determines the range
104 # Processed with threshold.cc
105 Phy/WirelessPhy set RXThresh_ 9.90556e-10
106 # 32dBm
107 Phy/WirelessPhy set Pt_ 1.58489
108
109
110 # Create and configure topography (used for mobile scenarios)
111 set topo [new Topography]
112 # 1000x1000m terrain
113 $topo load_flatgrid 1500 1500
114
115 # Configure the future nodes
116 $ns_ node-config -adhocRouting $val(rp) \
117 -llType $val(ll) \
118 -macType $val(mac) \
119 -ifqType $val(ifq) \
120 -ifqLen $val(ifqlen) \
121 -antType $val(ant) \
122 -propType $val(prop) \
123 -phyType $val(netif) \
124 -channel [new $val(chan)] \
125 -topoInstance $topo \
126 -agentTrace OFF \
127 -routerTrace OFF \
128 -macTrace ON \
129 -ifqTrace OFF \

79

F. Configuration for 802.11g in ns-2 with
distance losses

80

1 # ==
2 # Default NS2 header for Wannes's work on Castadiva's validation =
3 # Simulates a 802.11g wireless network (Parameters from Yojan) =
4 # ==
5 # = Version 1.1 === 2010.04.16 =
6 # ==
7
8 # ***
9 # Define general simulation options

10 # ***
11 # sensing threshold in dB above noise power
12 set sensingTreshdB 5
13
14 set system_type [exec uname -s]
15 # Libraries have different names in some operating systems
16 if {[string match "CYGWIN*" "$system_type"] == 1} {
17 load /usr/bin/ns-allinone-2.34/dei80211mr-1.1.4/src/.libs/cygdei80211mr-0.dll
18 } else {
19 load /usr/bin/ns-allinone-2.34/dei80211mr-1.1.4/src/.libs/libdei80211mr.so
20 }
21
22 set val(chan) Channel/WirelessChannel/PowerAware ;# channel type
23 set val(prop) Propagation/FreeSpace/PowerAware ;# radio-propagation model
24 set val(ant) Antenna/OmniAntenna ;# Antenna type
25 set val(ll) LL ;# Link layer type
26 set val(ifq) Queue/DropTail/PriQueue ;# Interface queue type
27 set val(ifqlen) 10 ;# max packet in ifq
28 set val(netif) Phy/WirelessPhy/PowerAware ;# network interface type
29 set val(mac) Mac/802_11/Multirate ;# MAC type
30 set val(rp) DumbAgent ;# #one of OLSR, AODV, AODVUU,

DSR, TORA, OLSR(v7)
31 set val(nn) 5 ;# number of mobilenodes
32 set PHYDataRate Mode54Mb
33 # ***
34 # Define advanced options
35 # ***
36 LL set mindelay_ 1us
37 LL set delay_ 1us
38 LL set bandwidth_ 0 ;# not used
39
40 Node/MobileNode instproc getIfq { param0} {
41 $self instvar ifq_
42 return $ifq_($param0)
43 }
44
45 Node/MobileNode instproc getPhy { param0} {
46 $self instvar netif_
47 return $netif_($param0)
48 }
49
50 set noisePower 7e-11
51 set per [new PER]
52 $per loadPERTable80211gTrivellato
53 $per set noise_ $noisePower
54 set val(CSThresh) [expr $noisePower * pow (10 , $sensingTreshdB / 10.0)]
55 set val(AffectThresh) [expr $noisePower]
56 # Transmission power is 32dBm
57 Phy/WirelessPhy set Pt_ 1.58489
58 Phy/WirelessPhy set freq_ 2437e6
59 Phy/WirelessPhy set L_ 1.0
60
61 # The RX treshold determines the range
62 # If the received signal strength is
63 # greater than this threshold, the packet can be successfully received.
64 # Processed with threshold.cc
65 # This threshold is for 300 m with 32dbm transmission power
66 Phy/WirelessPhy set RXThresh_ 9.90556e-10
67
68 Mac/802_11 set bSyncInterval_ 20e-6
69 Mac/802_11 set gSyncInterval_ 10e-6
70
71 Mac/802_11 set ShortRetryLimit_ 3
72 Mac/802_11 set LongRetryLimit_ 5
73

81

74 Mac/802_11/Multirate set RTSThreshold_ 100000
75
76 Mac/802_11/Multirate set dump_interf_ 0
77
78 $per set debug_ 0
79 PowerProfile set debug_ 0
80 Phy/WirelessPhy set debug_ 0
81 Mac/802_11/Multirate set debug_ 0
82 Phy/WirelessPhy set CSThresh_ $val(CSThresh)
83
84 # ==
85 # End of the default header =
86 # ==

82

G. Simple Gnuplot example file

83

set terminal svg size 600,400 enhanced fname 'arial' fsize 11 butt solid
set output 'CityMob - PositionX.svg'
set key horizontal
set title "One node's X position in a random simulation, depending on simulation progress"
set xlabel "Simulation progress (Seconds)"
set ylabel "Node's X coordinates"
set yrange [0:1500]

plot "positionNode0.tr" using 1:2 title 'NS node 1' with lines, \
"positionNode0.txt" using 1:2 title 'Castadiva node 1' with lines, \
"positionNode1.tr" using 1:2 title 'NS node 2' with lines, \
"positionNode1.txt" using 1:2 title 'Castadiva node 2' with lines, \
"positionNode2.tr" using 1:2 title 'NS node 3' with lines, \
"positionNode2.txt" using 1:2 title 'Castadiva node 3' with lines, \
"positionNode3.tr" using 1:2 title 'NS node 4' with lines, \
"positionNode3.txt" using 1:2 title 'Castadiva node 4' with lines, \
"positionNode4.tr" using 1:2 title 'NS node 5' with lines, \
"positionNode4.txt" using 1:2 title 'Castadiva node 5' with lines
unset output

84

H. Mobility Plugin algorithm for the
Mobility Plugin System

85

1 System.out.println("Variables are :\nminSpeed="+minSpeed+" maxSpeed="+maxSpeed+"
totaltime="+totalTime+" Width="+X+" Height="+Y);

2
3 // Array to place the nodes
4 float[] XPos = new float[accessPoints.Size()];
5 float[] YPos = new float[accessPoints.Size()];
6
7 // Initial position is 200 for all nodes
8 for (int i = 0; i < accessPoints.Size(); i++) {
9 XPos[i]=200;

10 YPos[i]=200;
11 }
12
13 // At each second, position is incremented for al nodes
14 for (int j = 0; j <= totalTime; j++) {
15 for (int i = 0; i < accessPoints.Size(); i++) {
16 AP p = accessPoints.Get(i);
17
18 XPos[i] += 10*i;
19 YPos[i] += 10*i;
20
21 // Position cannot be outside of the canvas
22 XPos[i] = XPos[i] % (Float)X;
23 YPos[i] = YPos[i] % (Float)Y;
24
25 NodeCheckPoint checkPoint = new NodeCheckPoint((float) XPos[i], (float) YPos[i],

new Float(0));
26 System.out.println("Checkpoint : node"+i+"]["+j+"] ("+XPos+","+YPos+")");
27 nodes[i][j] = checkPoint;
28 }
29 }

86

	Personal Experience
	Background and motivations
	The Host University
	Universidad Politécnica de Valencia (UPV)
	Grupo de redes de computadores
	An internship opportunity
	Technical aspects

	Objectives & time management
	Objectives
	Time management

	Achieved work
	What is Castadiva ?
	MANETs
	Introduction to Castadiva
	Castadiva's features

	Objectives
	Results
	How to setup the test-bed
	Setup the Core
	Setup the Nodes
	Compile for the routers

	Validation of new functionalities
	The execution planner
	Routing Plugins
	Mobility Plugins
	CityMob Import
	Minor issues in Castadiva

	Important mobility issues in Castadiva
	Bad throughput calculation
	Bad ARP emulation with TCP

	Maximal UDP bit rate issue
	Writing a research Article

	Useful software
	Netbeans
	Network Simulator 2 (NS-2)
	Introduction
	Learning about ns-2
	Simulating 802.11g with ns-2
	Setting ranges with ns-2
	Analyzing ns-2 results
	Castadiva and ns-2

	Gnuplot
	LaTeX

	Conclusion
	Thanks
	Bibliography

	Appendices
	Castadiva's GUI splash view
	Extending an emulation platform for automatized and distributed evaluation of QoS in MANETs researchArticle
	Johann M. Márquez Barja's implementation for 802.11g in ns-2
	CityMob2 output file example
	Configuration for 802.11g in ns-2 without distance losses
	Configuration for 802.11g in ns-2 with distance losses
	Simple Gnuplot example file
	Mobility Plugin algorithm for the Mobility Plugin System

